Database Systems

(EPRIFr 7 ak)

November 29/30, 2006
Lecture #8

Announcement

* Next week reading: Chapter 11 Hash-based Index
» Assignment #3 is due next week.
» Midterm exams are graded.

Tree-Structured Indexing

Chapter 10

Outline

Motivation for tree-structured indexes
ISAM index

B+ tree index

Key compression

B+ tree bulk-loading

Clustered index

Review: Three Alternatives for Data
Entries

 As for any index, 3 alternatives for data
entries k*:
(1) Clustered Index: Data record with key value k
(2) Unclustered Index: <k, rid of data record with
search key value k>

(3) Unclustered Index: <k, list of rids of data
records with search key k>, useful when search
key is not unique (not a candidate key).

Review: Three Alternatives for Data
Entries

» Choice of data entries is independent to the
indexing technique used to locate data entries
k*.

— Two general indexing techniques: hash-structured
indexing or tree-structured indexing

Tree vs. Hash-Structured Indexing

» Tree index supports both range searches and equality
searches efficiently.
— Why efficient range searches?

« Data entries (on the leaf nodes of the tree) are sorted.

« Perform equality search on the first qualifying data entry + scan to
find the rests.

 Data records also need to be sorted by search key in case that the
range searches access record fields other than the search key.

» Hash index supports equality search efficiently, but
not range search.

— Why inefficient range searches?
« Data entries are hashed (using a hash function), not sorted.

Why [tree] index?

» Range search: Find all students with gpa > 3.0

- Sorted data file: binary search to find first such student, then scan to
find others.

- Cost?

 Simple solution: create a smaller index file.
— Cost of binary search over index file is reduced.

[Tlle] || Y

/[\

“Pagel‘ ||’Pagez‘ | Page 3 ’DataFiIe‘
[

b \ . PN
l Carmdo pmaryjseargm o (SImaller) Taex 1me!] 8

Why tree index?

e But, the index file can still be large.
— The cost of binary search over the index file can still be large.
— Can we further reduce search cost?

» Apply the simple solution again: create multiple levels of
indexes.

— Each index level is much smaller than the lower index level. This
index structure is a tree.

» Say if a tree node is an index page holding, e.g.,100 indexes.

— A tree with a depth e root index page to the leaf index
page) can hold over records.

— The cost of search is|:|page access.

ISAM and B+ Tree

» Two tree-structured indexings:

— ISAM (Indexed Sequential Access Method): static structure.
* Assuming that the file does not grow or shrink too much.

— B+ tree: dynamic structure
 Tree structure adjusts gracefully under inserts and deletes.
» Analyze cost of the following operations:
— Search
— Insertion of data entries
— Deletion of data entries
— Concurrent access.

10

ISAM
index entrx

Po| K1 [Py K2|P, K |Pm

7y 7y]]
O O s (P s e 0 S s (0
Pages . : K\ lﬂ ’,’,'7
what if inserting to a full page? N
_ _ Primary pages
* Leaf pages contain data entries. 1

Example

100

\
/

0

\

<101
1110

—11 \
3530
——179] T30
180

180"

<—100
1120
1130

150
~—1156
<1200

12

Non-leaf node

o 8
N
X A
) X
+—
o3
[72]
= V
X~
<V
L
\ D G8 Aay yum
S6 w 56 —— 40281 0|
A3y yum
I8 r_m ~ 18 —— H_mho%m_:co 1
o av" 1S Aox yum
5~ 2 m /G —T— pioaiol
~., < Vv
(@) N~
+— Lo
[72]
>
~ 5
S v

14

Comments on ISAM

* File creation;

— Assume that data records are present and will not
change much in the future.

— Sort data records. Allocate data pages for the
sorted data records.

— Sort data entries based on the search keys.
Allocate leaf index pages for sorted data entries
sequentially.

15

ISAM Operations

» Search: Start at root; use key comparisons to go to
leaf.

— Cost = log ¢ N, where F = # entries/index page, N = # leaf
pages
* Insert: Find the leaf page and put it there. If the leaf
page is full, put it in the overflow page.

— Cost = search cost + constant (assuming little or no
overflow pages)

» Delete: Find and remove from the leaf page; if
empty overflow page, de-allocate.

— Cost = search cost + constant (assuming little or no
overflow pages)

16

Example ISAM Tree

» Each node can hold 2 entries; no need for "next-leaf-page’
pointers in primary pages. Why not?
— Primary pages are allocated sequentially at file creation time.

[Root |
40

T

20 33 51| |63

/| L\

10*

15*

20* 27* 33* | 37* 40% | 46* 51* 55* 63*

97*

17

After Inserting 23*, 48*, 41*, 42* ...

Index

Pages

(oot

40

T~

20| |33 51| |63

Primary
Leaf
Pages

P/ / \ﬂ V/ v \

10*

15* 20* | 27* 33* | 37* 40* 46* 51* | 55* 63*

97*

\ \

Overflow

Pages

1 1

18

.. Now Deleting 42*, 51*, 97*
[Root | =

Index 401 |
Pages \
20| | 33 51|63
Primary y \ / v \
Leaf 10¢ | 15+ 20+ | 27¢ 33 | 37+ 40% 46* 51% | 55¢ | | e3¢ | 97+
Pages
)\)\
) 1
Overflow 23* 48* | 41%
Pages l
42+
19
Root ™=
40
20(| 33 51{ |63
/ z \
10*| 15* 20*% | 27* 33*%| 37* 40*%| 46* 55* 63*
23 484 41

* Note that 51* appears in index levels, but not in leaf!

10

Properties of ISAM Tree

 Insertions and deletions affect only the leaf pages, not the
non-leaf pages
— index in the tree is static.

« Static index tree has both advantages & disadvantages.

— Advantage:| |concurrent
access.

- Disadvantage: when a file grow| \
leading to poor performance.
* |ISAM tree is good when data does not change much.
— To accommodate some insertions, can leave the primarily pages 20%
empty.
» B+ tree can support file growth & shrink efficiently, but at the
cost of locking overhead.

21

B+ Tree

 |tis similar to ISAM tree-structure, except:

— It has no overflow chains (this is the cause of poor performance in
ISAM).

* When an insertion goes to a leaf page becomes full, a new leaf page is
created.

— Leaf pages are not allocated sequentially. Leaf pages are sorted and
organized into doubly-linked list.

— Index pages can grow and shrink with size of data file.

Index Entries
(Direct search)

/]’ Data Entries
| ("Sequence set")

22

11

Properties of B+ Tree

» Keep tree height-balanced.

— Balance means that distance from
root to all leaf nodes are the same . —

* Minimum 50% occupancy (except H 5 H 13 ‘ H H
for root)
— Each index page node must containd 1= 1 e T ey

<=m <= 2d entries.

— The parameter m is the number of
occupied entries.

— The parameter d is called the order
of the tree (or ¥2 node capacity)

23

More Properties of B+ Tree

» Cost of search, insert, and delete (disk page 1/0s):

— O (height of the tree) = ©(log ., N), where N = # leaf
pages

 Supports equality and range-searches efficiently.
o B+ tree is the most widely used index.

24

12

Example B+ Tree

 Search begins at root, and key comparisons direct it to a leaf

(same as in ISAM).
+ Search for 5% 15*, all data entries >= 24* ...

Root \

13 17 24 30

|2*|3* | 5+ | 7*| |l4*|16*| | | |19*| 20* 22*| | |24*|27*|29*| | |33*|34*|38*|39*|

25

B+ Trees in Practice

» Typical order: 100. Typical fill-factor: 66%.
- average fanout = 133
» Typical capacities:
- Height 4: 1334 = 312,900,700 records
- Height 3: 1333 = 2,352,637 records
» Can often hold top levels in buffer pool:
- Levell= 1page = 8 Kbytes
- Level2= 133 pages= 1 Mbyte
- Level 3 =17,689 pages = 133 Mbytes

26

13

Inserting a Data Entry into a B+
Tree

Find correct leaf L.

Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.
This can happen recursively

- To split index node, redistribute entries evenly, but push up middle
key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

27

Inserting 8% Ft N\

13 17 24 30

¥ N\ ¥\ \ ¥ N\
|2* 3 | 5¢ 7*| |l4*|16*| | | |19* 20¢] 22+ | 24+ | 27+] 20+ 38+ | 39*

| | 33*| 34*

e Why is minimum

occupancy always Entry to be inserted in parent node.

guaranteed in both = (Note that 5 is copied up and
leaf and index pg continues to appear in the leaf.)
splits?
What is the 1] | 1 [T] |
difference between Entry to be inserted in parent
copy-up and push- node. (Note that 17 is pushed
up? 4/ up and only appears once in the
How to avoid index. Contrast this with a leaf
splitting?] Sp"t
5|1
IR 242 ll L .
/7 ¥

14

Example B+ Tree After Inserting
8*

Roo&A
]

z \
e el) el 11|

N N)))
I I O O s I ES S K

Root was split, leading to increase in height.
Avoid split by re-distributing entries.

Redistribution after Inserting 8*
Root \
|2*|3*|5*|7*| |14*|16*| | | |19*|20* 22*| | |24*|27*|29*| | |33*|34*|38*|39*|

Check sibling leaf node to~ °°" \

see if it has space. o 7 a2z 1 20
Copy up 8 (new low key
value on the 2" |eaf node

K N\ N\ \
|2*|3*|5*|7*| |8* |14*|16*| | |19*|20*

N\ N\
22*| | |24*|27*|29*| | |33*|34*|38*|39*|
30

Deleting a Data Entry from a B+
Tree

Start at root, find leaf L where entry belongs.

Remove the entry.
- If Lis at least half-full, done!
- What if L is less than half-full?

* Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

» What if re-distribution fails?
— merge L and sibling.
If merge occurred, must delete index entry (pointing
to L or sibling) from parent of L.

Merge could propagate to root, decreasing height.

31

Tree After Deleting 19* and 20* ...
Roo&
.|
el =l 1]

N N ra—" N N
O 3 O 5 53 2 e I ES X K
i
el I S
O A s 5 I G S I I ESS S K

¢ Deleting 19* is easy.
¢ Deleting 20* is done with re-distribution. Notice how middle key is copied
up. 32

16

toss

el L 0]

e el

2 0 O 2 2 O S
And then deleting 24* \

e Must merge.

¢ Observe toss of index entry (27),
and pull down of index entry (17).

¥
22 [z 20| | [[ser [as [oo |
RON

5 13 17 30
Pull down

30

¥ ¥ N KN ¥ A
I 0 3 I O 5 R Y I A B

33

Example of Non-leaf Re-
distribution

» Tree is shown below during deletion of 24*. (What could be a
possible initial tree?)

» May re-distribute entry from left child of root to right child.

Roo\
= 00

PP BLLL
¥ A//\ [¥ X Y Y
L LTl st Tl [t 1])=

34

w

17

After Re-distribution

* Intuitively, entries are re-distributed by pushing through the
splitting entry in the parent node.

« It suffices to re-distribute index entry with key 20; we’ve re-
distributed 17 as well for illustration.

RoOt\(

17

Prefix Key Compression

» Important to increase fan-out. (Why?)
» Key values in index entries only “direct traffic’; can often
compress them.
— Compress “David Smith” to “Dav”? How about “Davi”?

— In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

Daniel Lee David Smith Devarakonda ...

Dante Wu Darius Rex Davey Jones

36

18

Bulk Loading of a B+ Tree

Given a large collection of records
We want to create a B+ tree on some field

How to do it slowly?

— Repeatedly insertions. What is the cost of building index?
* # entries * log:(N), where F = fan-out, N = # index pages

How to do it quickly?

37

Bulk Loading of a B+ Tree

Bulk Loading can be done much more efficiently.

— Step 1: Sort data entries. Insert pointer to first (leaf) page
in a new (root) page.

Root™

| | | | Sorted pages of data entries; not yet in B+ tree

(ol Lo) o] 2o o] s o] seond o]

38

19

Bulk Loading(Conti)

R°%‘ o H 10*“ Sorted pages of data entries; not yet

in B+ tree

oo

3] ar| [6+] o* |1o*|11*| 12*|13-| |zo*|22*| |23*|31*| |35*|36*| |3s-|41*| |44*|

root [l |

6 ||12
|

[

Data entry pages
|| not yet in B+ tree

3+[4+| [6*] o* 1031115| 12]13 r20’|221 231311 (351367 [38far] [a4{ |

39

Bulk Loading (Contd.)

o [][]
» Step 2: Build Index

entries for leaf pages. H6|.| 0 [=]] 1 g
— Always entered into
right-most index page /

Data entry pages
not yet in B+ tree

[

381411 441

When this fills up, it
splits. (Split may go up
right-most path to the
root.)

— Cost = # index pages,
which is much faster

just above leaf level. [3+]a+][6*]o* 10711151 12113f| 20122? 231131'1 357367

not yet in B+ tree

. Data entry pages

than repeated inserts. /‘%}J—U /Jl_ZH_U || || }Jﬁ%ﬂ

3*| 4%| | 6*| 9* 10;11E 121131 |20422 23;311 35:136* 38;{41; 44:|
40

20

Summary of Bulk Loading

e Option 1: multiple inserts.
- More I/Os during build.
- Does not give sequential storage of leaves.
» Option 2: Bulk Loading
- Fewer I/Os during build.
- Leaves will be stored sequentially (and linked, of course).
- Can control “fill factor” on pages.

41

A Note on Order’

 Order (the parameter d) concept denote minimum
occupancy on the number of entries per index page.
— But it is not practical in real implementation. Why?

- Index pages can typically hold many more entries than leaf pages.

- Variable sized records and search keys mean different nodes will
contain different numbers of entries.

» Order is replaced by physical space criterion ("at least
half-full’).

42

21

Midterm Exam

Average = 76, Std = 13

2006 Database Midterm

(=1 f=3
= ISy
< f=1

1

20-30
30-40
40-50
50-60
60-70

70-80

80-90

90-100

43

22

