
1

1

Database Systems
(資料庫系統)

November 29/30, 2006
Lecture #8

2

Announcement

• Next week reading: Chapter 11 Hash-based Index
• Assignment #3 is due next week.
• Midterm exams are graded.

2

3

Tree-Structured Indexing

Chapter 10

4

Outline

• Motivation for tree-structured indexes
• ISAM index
• B+ tree index
• Key compression
• B+ tree bulk-loading
• Clustered index

3

5

Review: Three Alternatives for Data
Entries

• As for any index, 3 alternatives for data
entries k*:
(1) Clustered Index: Data record with key value k
(2) Unclustered Index: <k, rid of data record with

search key value k>
(3) Unclustered Index: <k, list of rids of data

records with search key k>, useful when search
key is not unique (not a candidate key).

6

Review: Three Alternatives for Data
Entries

• Choice of data entries is independent to the
indexing technique used to locate data entries
k*.
– Two general indexing techniques: hash-structured

indexing or tree-structured indexing

4

7

Tree vs. Hash-Structured Indexing

• Tree index supports both range searches and equality
searches efficiently.
– Why efficient range searches?

• Data entries (on the leaf nodes of the tree) are sorted.
• Perform equality search on the first qualifying data entry + scan to

find the rests.
• Data records also need to be sorted by search key in case that the

range searches access record fields other than the search key.

• Hash index supports equality search efficiently, but
not range search.
– Why inefficient range searches?

• Data entries are hashed (using a hash function), not sorted.

8

Why [tree] index?
• Range search: Find all students with gpa > 3.0

– Sorted data file: binary search to find first such student, then scan to
find others.

– Cost?

• Simple solution: create a smaller index file.
– Cost of binary search over index file is reduced.

* Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

5

9

Why tree index?

• But, the index file can still be large.
– The cost of binary search over the index file can still be large.
– Can we further reduce search cost?

• Apply the simple solution again: create multiple levels of
indexes.
– Each index level is much smaller than the lower index level. This

index structure is a tree.

• Say if a tree node is an index page holding, e.g.,100 indexes.
– A tree with a depth of 4 (from the root index page to the leaf index

page) can hold over 100,000,000 records.
– The cost of search is 3~4 page access.

10

ISAM and B+ Tree

• Two tree-structured indexings:
– ISAM (Indexed Sequential Access Method): static structure.

• Assuming that the file does not grow or shrink too much.

– B+ tree: dynamic structure
• Tree structure adjusts gracefully under inserts and deletes.

• Analyze cost of the following operations:
– Search
– Insertion of data entries
– Deletion of data entries
– Concurrent access.

6

11

ISAM

* Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Index Pages

what if inserting to a full page?

12

Example

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

7

13

57 81 95
to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 k>=95

Non-leaf node

14

Leaf node

57 81 95

T
o

re
co

rd

w
ith

 k
ey

 5
7

T
o

re
co

rd

w
ith

 k
ey

 8
1

T
o

re
co

rd

w
ith

 k
ey

 8
5

8

15

Comments on ISAM

• File creation:
– Assume that data records are present and will not

change much in the future.
– Sort data records. Allocate data pages for the

sorted data records.
– Sort data entries based on the search keys.

Allocate leaf index pages for sorted data entries
sequentially.

16

ISAM Operations

• Search: Start at root; use key comparisons to go to
leaf.
– Cost = log F N, where F = # entries/index page, N = # leaf

pages
• Insert: Find the leaf page and put it there. If the leaf

page is full, put it in the overflow page.
– Cost = search cost + constant (assuming little or no

overflow pages)
• Delete: Find and remove from the leaf page; if

empty overflow page, de-allocate.
– Cost = search cost + constant (assuming little or no

overflow pages)

9

17

Example ISAM Tree

• Each node can hold 2 entries; no need for `next-leaf-page’
pointers in primary pages. Why not?
– Primary pages are allocated sequentially at file creation time.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

18

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

10

19

... Now Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

20
* Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40
Root

23* 48* 41*

11

21

Properties of ISAM Tree

• Insertions and deletions affect only the leaf pages, not the
non-leaf pages
– index in the tree is static.

• Static index tree has both advantages & disadvantages.
– Advantage: No locking and waiting on index pages for concurrent

access.
– Disadvantage: when a file grows, it creates large overflow chains,

leading to poor performance.

• ISAM tree is good when data does not change much.
– To accommodate some insertions, can leave the primarily pages 20%

empty.

• B+ tree can support file growth & shrink efficiently, but at the
cost of locking overhead.

22

B+ Tree
• It is similar to ISAM tree-structure, except:

– It has no overflow chains (this is the cause of poor performance in
ISAM).

• When an insertion goes to a leaf page becomes full, a new leaf page is
created.

– Leaf pages are not allocated sequentially. Leaf pages are sorted and
organized into doubly-linked list.

– Index pages can grow and shrink with size of data file.

Index Entries

Data Entries
("Sequence set")

(Direct search)

12

23

Properties of B+ Tree

• Keep tree height-balanced.
– Balance means that distance from

root to all leaf nodes are the same .

• Minimum 50% occupancy (except
for root)
– Each index page node must contain d

<= m <= 2d entries.
– The parameter m is the number of

occupied entries.
– The parameter d is called the order

of the tree (or ½ node capacity)

24

More Properties of B+ Tree

• Cost of search, insert, and delete (disk page I/Os):
– Θ(height of the tree) = Θ(log m+1 N), where N = # leaf

pages

• Supports equality and range-searches efficiently.
• B+ tree is the most widely used index.

13

25

Example B+ Tree

• Search begins at root, and key comparisons direct it to a leaf
(same as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

26

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 66%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

14

27

Inserting a Data Entry into a B+
Tree

• Find correct leaf L.
• Put data entry onto L.

– If L has enough space, done!
– Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
– To split index node, redistribute entries evenly, but push up middle

key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

28

Inserting 8*

• Why is minimum
occupancy always
guaranteed in both
leaf and index pg
splits?

• What is the
difference between
copy-up and push-
up?

• How to avoid
splitting?

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is copied up and
continues to appear in the leaf.)

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

5 24 30

17

13

Entry to be inserted in parent
node. (Note that 17 is pushed
up and only appears once in the
index. Contrast this with a leaf
split.

15

29

Example B+ Tree After Inserting
8*

Root was split, leading to increase in height.
Avoid split by re-distributing entries.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

30

Redistribution after Inserting 8*

Root

17 24 30

2* 3* 5* 7* 8* 14* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

8

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

16*

Check sibling leaf node to
see if it has space.
Copy up 8 (new low key
value on the 2nd leaf node)

16

31

Deleting a Data Entry from a B+
Tree

• Start at root, find leaf L where entry belongs.
• Remove the entry.

– If L is at least half-full, done!
– What if L is less than half-full?

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• What if re-distribution fails?
– merge L and sibling.

• If merge occurred, must delete index entry (pointing
to L or sibling) from parent of L.

• Merge could propagate to root, decreasing height.

32

Tree After Deleting 19* and 20* ...

• Deleting 19* is easy.
• Deleting 20* is done with re-distribution. Notice how middle key is copied

up.

39*2* 3*

17

30

14* 16* 33* 34* 38*

135

7*5* 8* 22* 24*

27

27* 29*

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

17

33

• And then deleting 24*
• Must merge.
• Observe toss of index entry (27),

and pull down of index entry (17).

30

22* 27* 29* 33* 34* 38* 39*

2* 3*

17

30

14* 16* 33* 34* 38*

135

7*5* 8* 22* 24*

27

27* 29*

toss

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Pull down

39*

34

Example of Non-leaf Re-
distribution

• Tree is shown below during deletion of 24*. (What could be a
possible initial tree?)

• May re-distribute entry from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

18

35

After Re-distribution

• Intuitively, entries are re-distributed by pushing through the
splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20; we’ve re-
distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

36

Prefix Key Compression

• Important to increase fan-out. (Why?)
• Key values in index entries only `direct traffic’; can often

compress them.
– Compress “David Smith” to “Dav”? How about “Davi”?
– In general, while compressing, must leave each index entry greater

than every key value (in any subtree) to its left.

Daniel Lee David Smith Devarakonda …

Dante Wu Darius Rex Davey Jones…

19

37

Bulk Loading of a B+ Tree

• Given a large collection of records
• We want to create a B+ tree on some field
• How to do it slowly?

– Repeatedly insertions. What is the cost of building index?
• # entries * logF(N), where F = fan-out, N = # index pages

• How to do it quickly?

38

Bulk Loading of a B+ Tree

• Bulk Loading can be done much more efficiently.
– Step 1: Sort data entries. Insert pointer to first (leaf) page

in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ treeRoot

20

39

Bulk Loading(Conti)

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ treeRoot
6* 10*

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages
not yet in B+ tree126

10

40

Bulk Loading (Contd.)

• Step 2: Build Index
entries for leaf pages.
– Always entered into

right-most index page
just above leaf level.
When this fills up, it
splits. (Split may go up
right-most path to the
root.)

– Cost = # index pages,
which is much faster
than repeated inserts.

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

21

41

Summary of Bulk Loading

• Option 1: multiple inserts.
– More I/Os during build.
– Does not give sequential storage of leaves.

• Option 2: Bulk Loading
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of course).
– Can control “fill factor” on pages.

42

A Note on `Order’

• Order (the parameter d) concept denote minimum
occupancy on the number of entries per index page.
– But it is not practical in real implementation. Why?

• Index pages can typically hold many more entries than leaf pages.
• Variable sized records and search keys mean different nodes will

contain different numbers of entries.

• Order is replaced by physical space criterion (`at least
half-full’).

22

43

Midterm Exam

2006 Database Midterm

0 0 0 0 0

16

32

27
31

23

0

5

10

15

20

25

30

35

0-
10

10
-2
0

20
-3
0

30
-4
0

40
-5
0

50
-6
0

60
-7
0

70
-8
0

80
-9
0

90
-1
00

Average = 76, Std = 13

