
1

1

Database Systems
(資料庫系統)

December 19/20, 2006
Lecture #11

2

Announcement

• Assignment #4 is due tomorrow.
• Assignment #5 will be out on the course homepage

next monday.
– It is two weeks from tomorrow.

• Forum on “Technology, Human, and Life”on 1/6
– http://www.nightmarket.org/2007/forum0106.htm

2

3

External Sorting

Chapter 13

4

Why learn sorting again?

• O (n*n): bubble, insertion, selection, … sorts
• O (n log n): heap, merge, quick, … sorts
• Sorting huge dataset (say 10 GB)
• CPU time complexity may mean little on practical

systems
• Why?

3

5

“External” Sorting Defined

• Refer to sorting methods when the data is too large to fit in
main memory.
– E.g., sort 10 GB of data in 100 MB of main memory.

• During sorting, some intermediate steps may require data to
be stored externally on disk.

• Disk I/O cost is much greater than CPU instruction cost
– Average disk page I/O cost: 10 ms vs. 4 GHz CPU clock: 0.25 ns.
– Minimize the disk I/Os (rather than number of comparisons).

6

Outline (easy chapter)

• Why does a DMBS sort data?
• Simple 2-way merge sort
• Generalize B-way merge sort
• Optimization

– Replacement sort
– Blocked I/O optimization
– Double buffering

• Using an existing B+ tree index vs. external sorting

4

7

• Users may want answers to query in some order
– E.g., students sorted by increasing age

• Sorting is the first step in bulk loading a B+ tree index
• Sorting is used for eliminating duplicate copies
• Join requires a sorting step.

– Sort-join algorithm requires sorting.

When does a DBMS sort data?

8

Bulk Loading of a B+ Tree
• Step 1: Sort data entries. Insert pointer to first (leaf) page in a

new (root) page.
• Step 2: Build Index entries for leaf pages.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

6* 10*

5

9

Example of Sort-Merge Join

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy

28 103 11/3/96 yuppy

31 101 10/10/96 dustin

31 102 10/12/96 lubber

31 101 10/11/96 lubber

58 103 11/12/96 dustin

10

A Simple Two-Way Merge Sort

• External sorting: data >> memory size
• Say you only have 3 (memory) buffer pages.

– You have 7 pages of data to sort.
– Output is a sorted file of 7 pages.

• How would you do it?
• How would you do it if you have 4 buffer pages?
• How would you do it if you have n buffer pages?

3,4 6,2 9,4 8,7 5,6 3,1 2Input file

Memory buffer

6

11

A Simple Two-Way Merge Sort

• Basic idea is divide and
conquer.

• Sort smaller runs and
merge them into
bigger runs.

• Pass 0: read each page,
sort records in each
page, and write the
page out to disk. (1
buffer page is used)

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

12

A Simple Two-Way Merge Sort

• Pass 1: read two
pages, merge them,
and write them out
to disk. (3 buffer
pages are used)

• Pass 2-3: repeat
above step till one
sorted 8-page run.

• Each run is defined
as a sorted subfile.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

7

13

2-Way Merge Sort

• Say the number of pages in a file is 2k:
– Pass 0 produces 2k sorted runs of one page each
– Pass 1 produces 2k-1 sorted runs of two pages each
– Pass 2 produces 2k-2 sorted runs of four pages each
– Pass k produces one sorted runs of 2k pages.

• Each pass requires read + write each page in file: 2*N
• For a N pages file,

– the number of passes = ceiling (log2 N) + 1

• So total cost (disk I/Os) is
– 2*N*(ceiling(log2 N) + 1)

14

General External Merge Sort

More than 3 buffer pages. How can we utilize them?
• To sort a file with N pages using B buffer pages:

– Pass 0: use B buffer pages. Produce N / B sorted runs of B pages each.
– Pass 1..k: use B-1 buffer pages to merge B-1 runs, and use 1 buffer

page for output.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.
.

. . .

8

15

General External Merge Sort (B=4)

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

8,94,4 6,72,3 19,328,8 13,161,510,153,3 5,61,2

1,1

Pass 0: Read four unsorted pages, sort them, and write them out.
Produce 3 runs of 4 pages each.

Pass 1: Read three pages, one page from each of 3 runs, merge them,
and write them out. Produce 1 run of 12 pages.

2,2 3,3 …

merging

start start start

16

Cost of External Merge Sort

• # of passes: 1 + ceiling(log B-1 ceiling(N/B))
• Disk I/O Cost = 2*N*(# of passes)
• E.g., with 5 buffer pages, to sort 108 page file:

– Pass 0: ceiling(108/5) = 22 sorted runs of length 5 pages
each (last run is only 3 pages)

– Pass 1: ceiling(22/4) = 6 sorted runs of length 20 pages
each (last run is only 8 pages)

– Pass 2: 2 sorted runs, of length 80 pages and 28 pages
– Pass 3: Sorted file of 108 pages
– # of passes = 1 + ceiling (log 4 ceiling(108/5)) = 4
– Disk I/O costs = 2*108*4 = 864

9

17

Passes of External Sort
 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

18

Further Optimization Possible?

• Opportunity #1: create bigger length run in pass 0
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– How to keep both CPU & disks busy at the same time?

10

19

Opportunity 1: create bigger runs on the
1st pass

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

Current
Set Buffer
Input
Buffer
Output
Buffer

20

Replacement Sort (Optimize
Merge Sort)

• Pass 0 can output approx. 2B sorted pages on average. How?
• Divide B buffer pages into 3 parts:

– Current set buffer (B-2): unsorted or unmerged pages.
– Input buffer (1 page): one unsorted page.
– Output buffer (1 page): output sorted page.

• Algorithm:
– Pick the tuple in the current set with the smallest k value > largest

value in output buffer.
– Append k to output buffer.
– This creates a hole in current set, so move a tuple from input buffer to

current set buffer.
– When the input buffer is empty of tuples, read in a new unsorted page.

11

21

Replacement Sort Example (B=4)

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

3,4 6,2

9,4

Current
Set Buffer
Input
Buffer
Output
Buffer

3,4 6,2

9,4

3,4 6,9

4

2

4,4 6,9

2,3

8,7

8,4 6,9

4

7

2,3On disk

When do you start a new run?
All tuple values in the current set < the last tuple value in output buffer

22

Minimizing I/O Cost vs. Number of I/Os

• So far, the cost metric is the number of disk I/Os.
• This is inaccurate for two reasons:

– (1) Block I/O is a much cheaper (per I/O request) than
equal number of individual I/O requests.

• Block I/O: read/write several consecutive pages at the same time.

– (2) CPU cost may be significant.
• Keep CPU busy while we wait for disk I/Os.
• Double Buffering Technique.

12

23

Further Optimization Possible?

• Opportunity #1: create bigger length run in the 1st round
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks is much faster than

separate blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– How to keep both CPU & disks busy at the same time?

24

General External Merge Sort (B=4)
How to change it to Block I/O (block = 2 pages)?

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

8,94,4 6,72,3 19,328,8 13,161,510,153,3 5,61,2

1,1

Pass 0: Read four unsorted pages, sort them, and write them out. Produce
3 runs of 4 pages each.

Pass 1: Read three pages, one page from each of 3 runs, merge them, and
write them out. Produce 1 run of 12 pages.

2,2 3,3 …

merging

start start start

13

25

Block I/O

• Block access: read/write b pages as a unit.
• Assume the buffer pool has B pages, and file has N pages.
• Look at cost of external merge-sort (with replacement

optimization) using Block I/O:
– Block I/O has little affect on pass 0.

• Pass 0 produces initial N’ (= N/2B) runs of length 2B pages.

– Pass 1..k, we can merge F = B/b – 1 runs.
– The total number of passes (to create one run of N pages) is 1 + logF

(N’).

26

Further Optimization Possible?

• Opportunity #1: create bigger length run in the 1st round
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– While CPU is busy sorting or merging, disk is idle.
– How to keep both CPU & disks busy at the same time?

14

27

Double Buffering
• Keep CPU busy, minimizes waiting for I/O requests.

– While the CPU is working on the current run, start to prefetch data
for the next run (called shadow blocks).

• Potentially, more passes; in practice, most files still sorted in
2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

28

Using B+ Trees for Sorting

• Assumption: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf
pages.

• Is this a good idea?
• Cases to consider:

– B+ tree is clustered
– B+ tree is not clustered

15

29

Clustered B+ Tree Used for Sorting
• Cost: root to the left-

most leaf, then retrieve
all leaf pages
(Alternative 1)

• If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched just
once.

• Cost better than
external sorting?

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

30

Unclustered B+ Tree Used for
Sorting

• Alternative (2) for data entries; each data entry
contains rid of a data record. In general, one I/O
per data record.

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

16

31

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

* p: # of records per page
* B=1,000 and block size=32 for sorting
* p=100 is the more realistic value.

32

We are done with Chapter 13

Chapter 14 (only section 14.4)

17

33

Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1

WHERE R1.sid=S1.sid
• R ∞ S is very common, so must be carefully optimized.
• R X S is large; so, R X S followed by a selection is inefficient.
• Assume: M pages in R, pR tuples per page, N pages in S, pS

tuples per page.
– In our examples, R is Reserves and S is Sailors.

• We will consider more complex join conditions later.

34

Two Classes of Algorithms to
Implement Join Operation

• Algorithms in class 1 require enumerating all tuples in the
cross-product and discard tuples that do not meet the join
condition.
– Simple Nested Loops Join
– Blocked Nested Loops Join

• Algorithms in class 2 avoid enumerating the cross-product.
– Index Nested Loops Join
– Sort-Merge Join
– Hash Join

18

35

Simple Nested Loops Join

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result
• For each tuple in the outer relation R, scan the entire

inner relation S (scan S total of pR * M times!).
– Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os =>

very huge.

• How can we improve simple nested loops join?

36

Page Oriented Nested Loops Join

foreach page of R do
foreach page of S do

for all matching tuples r in R-block and
s in S-page, add <r, s> to result

• Cost: M + M*N = 1000 + 1000*500 = 501,000 =>
still huge.

• If smaller relation (S) is outer, cost = 500 +
500*1000 = 500,500

19

37

Block Nested Loops Join

foreach block of B-2 pages of R do
foreach page of S do

for all matching tuples r in R-block and
s in S-page, add <r, s> to result

• Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add <r,

s> to result. Then read next R-block, scan S, etc.

38

Block Nested Loops Join: Efficient
Matching Pairs

• If B is large, it may be slow to find matching pairs between
tuples in S-page and R-block (R-block has B-2 pages).

• The solution is to build a main-memory hash table for R-block.

. . .

. . .

R & S
Hash table for block of R

Input buffer for S Output buffer

. . .

Join Result

20

39

Examples of Block Nested Loops
• Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks = ceiling (# of pages of outer / blocksize)
• With Reserves (R) as outer, and 102 buffer pages:

– Cost of scanning R is 1000 I/Os; a total of 10 blocks.
– Per block of R, scan Sailors (S); 10*500 I/Os.
– Total cost = 1000 + 10 * 500 = 6000 page I/Os => huge improvement

over page-oriented nested loops join.
• With 100-page block of Sailors as outer:

– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves; 5*1000 I/Os.
– Total cost = 500 + 5*1000 = 5500 page I/Os

• For blocked access (block I/Os are more efficient), it may be
best to divide buffers evenly between R and S.

40

Index Nested Loops Join
foreach tuple r in R do

foreach tuple s in S where ri == sj do
add <r, s> to result

• If there is an index on the join column of one relation (say S),
can make it the inner and exploit the index.

– Cost: M + ((M*pR) * cost of finding matching S tuples)
• For each R tuple, cost of probing S index is about 1.2 for hash

index, 2-4 for B+ tree. Cost of finding S tuples (assume Alt.
(2) or (3) for data entries) depends on clustering.

– Clustered index: 1 I/O (typical)
– Unclustered index: up to 1 I/O per matching S tuple.

21

41

Examples of Index Nested Loops

• Hash-index (Alt. 2) on sid of Sailors (as inner):
– Scan Reserves: 1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the

exactly one) matching Sailors tuple.
– Total: 100 0+ 100,000 * 2.2 = 221,000 I/Os.

• Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors: 500 page I/Os, 80*500 tuples.
– For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of

retrieving matching Reserves tuples.
– Assume uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of

retrieving them is 1 or 2.5 I/Os depending on whether the index is clustered.
– Total (Clustered): 500 + 40,000 * 2.2 = 88,500 I/Os.

• Given choices, put the relation with higher # tuples as inner loop.
• Index Nested Loop performs better than simple nested loop.

42

Sort-Merge Join

• Sort R and S on the join column [merge-sort], then scan them
to do a ``merge’’ (on join col.) [scan-merge], and output
result tuples.

• Scan-merge:
– Advance scan of R until current R-tuple >= current S tuple, then

advance scan of S until current S-tuple >= current R tuple; do this until
current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R group) and
all S tuples with same value in Sj (current S group) match; output <r,
s> for all pairs of such tuples.

– Then resume scanning R and S.

22

43

Scan-Merge
sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
28 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Gs

Tr

1

1

2

3

4

5

6

2a

2b

Ts

3a

3b 5a

5b

6a

6b

44

Cost of Merge-Sort Join

• R is scanned once; each S group is scanned once per matching
R tuple. (Multiple scans of an S group are likely to find
needed pages in buffer.)

• Cost: 2 (M log M + N log N) + (M+N)
– Assume enough buffer pages to sort both Reserves and Sailors in 2

passes
– The cost of merge-sorting two relations is 2 M log M + 2 N log N.
– The cost of scan-merge two sorted relations is M+N.
– Total join cost: 2*2*1000 + 2*2*500 + 1000 + 500 = 7500 page I/Os.

• Any possible refinement to reduce cost?

23

45

Refinement of Sort-Merge Join
• Combine the merging phase in sorting with the scan-merge for

the join.
– Allocate one buffer space for each run (in the merge pass) in R & S.
– Buffer size B > squar_root(L), where L is the size of the larger relation.

Why?
• # runs = 2(L/2B) = L/B < B [replacement sort]

– Cost: read+write each relation in Pass 0 + read each relation in (only)
merging pass (not counting the writing of result tuples).

– Cost goes down from 7500 to 4500 I/Os

L

R S

scan-mergesort-merge

46

Hash Join

• Hash both relations on the join attribute using the
same hash function h.
– Tuples in R-partition_i (bucket) can only match with tuples

in S-partition_i.

• For i=1..k, check for matching pairs in R-partition_i
and S-partition_i.

• For efficient matching pairs, apply hashing to tuples
of R-partition using another hash function h2.

24

47

Hash-Join
• Partition both

relations using hash fn
h: R tuples in
partition i will only
match S tuples in
partition i.

• Read in a partition of
R, hash it using h2
(<> h!). Scan
matching partition of
S, search for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

48

Observations on Hash-Join

• #partitions k < B-1 (need one buffer page for reading), and B-
2 > size of largest partition to be held in memory.

• Assume uniformly sized partitions, and maximize k, we get:
– k= B-1, and B-2 > M/(B-1), i.e., B must be > square_root(M)

• If we build an in-memory hash table to speed up the matching
of tuples, a little more memory is needed.

• If the hash function does not partition uniformly, one or more
R partitions may not fit in memory. Can apply hash-join
technique recursively to do the join of this R-partition with
corresponding S-partition.

M

25

49

Cost of Hash-Join

• In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

• In our running example, this is a total of 4500 I/Os.
• Sort-Merge Join vs. Hash Join:

– Same amount of buffer pages.
– Same cost of 3(M+N) I/Os.
– Hash Join shown to be highly parallelizable.
– Sort-Merge less sensitive to data skew; result is sorted.

50

Complex Join Conditions

• So far, we have only discussed single equality join
condition.

• How about equalities over several attributes? (e.g.,
R.sid=S.sid AND R.rname=S.sname):
– For Index Nested Loops join, build index on <sid, sname>

on R (if R is inner); or use existing indexes on sid or
sname.

– For Sort-Merge and Hash Join, sort/partition on
combination of the two join columns.

