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Database Systems
(資料庫系統) 

December 19/20, 2006
Lecture #11
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Announcement

• Assignment #4 is due tomorrow.
• Assignment #5 will be out on the course homepage 

next monday.
– It is two weeks from tomorrow.

• Forum on “Technology, Human, and Life”on 1/6
– http://www.nightmarket.org/2007/forum0106.htm
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External Sorting

Chapter 13
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Why learn sorting again?

• O (n*n): bubble, insertion, selection, … sorts
• O (n log n): heap, merge, quick, … sorts 
• Sorting huge dataset (say 10 GB)
• CPU time complexity may mean little on practical 

systems
• Why? 
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“External” Sorting Defined

• Refer to sorting methods when the data is too large to fit in 
main memory.
– E.g., sort 10 GB of data in 100 MB of main memory.

• During sorting, some intermediate steps may require data to 
be stored externally on disk.

• Disk I/O cost is much greater than CPU instruction cost
– Average disk page I/O cost: 10 ms vs. 4 GHz CPU clock: 0.25 ns.
– Minimize the disk I/Os (rather than number of comparisons).
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Outline (easy chapter)

• Why does a DMBS sort data?
• Simple 2-way merge sort
• Generalize B-way merge sort
• Optimization

– Replacement sort
– Blocked I/O optimization
– Double buffering

• Using an existing B+ tree index vs. external sorting
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• Users may want answers to query in some order
– E.g., students sorted by increasing age

• Sorting is the first step in bulk loading a B+ tree index
• Sorting is used for eliminating duplicate copies
• Join requires a sorting step.

– Sort-join algorithm requires sorting.

When does a DBMS sort data?

8

Bulk Loading of a B+ Tree
• Step 1: Sort data entries. Insert pointer to first (leaf) page in a 

new (root) page.
• Step 2: Build Index entries for leaf pages.  

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

6* 10*
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Example of Sort-Merge Join

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

28 103 12/4/96 guppy 

28 103 11/3/96 yuppy 

31 101 10/10/96 dustin 

31 102 10/12/96 lubber 

31 101 10/11/96 lubber 

58 103 11/12/96 dustin 
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A Simple Two-Way Merge Sort

• External sorting: data >> memory size
• Say you only have 3 (memory) buffer pages.

– You have 7 pages of data to sort.
– Output is a sorted file of 7 pages.

• How would you do it?
• How would you do it if you have 4 buffer pages?
• How would you do it if you have n buffer pages?

3,4 6,2 9,4 8,7 5,6 3,1 2Input file

Memory buffer
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A Simple Two-Way Merge Sort

• Basic idea is divide and 
conquer.

• Sort smaller runs and 
merge them into 
bigger runs.

• Pass 0: read each page, 
sort records in each 
page, and write the 
page out to disk.  (1 
buffer page is used)

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3
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3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8
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A Simple Two-Way Merge Sort

• Pass 1: read two 
pages, merge them, 
and write them out 
to disk.  (3 buffer 
pages are used)

• Pass 2-3: repeat 
above step till one 
sorted 8-page run.

• Each run is defined 
as a sorted subfile.

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3
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3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8



7

13

2-Way Merge Sort

• Say the number of pages in a file is 2k:
– Pass 0 produces 2k sorted runs of one page each
– Pass 1 produces 2k-1 sorted runs of two pages each
– Pass 2 produces 2k-2 sorted runs of four pages each
– Pass k produces one sorted runs of 2k pages.

• Each pass requires read + write each page in file: 2*N
• For a N pages file,

– the number of passes = ceiling ( log2 N)   + 1

• So total cost (disk I/Os) is 
– 2*N*( ceiling(log2 N)   + 1)
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General External Merge Sort

More than 3 buffer pages.  How can we utilize them?
• To sort a file with N pages using B buffer pages:

– Pass 0: use B buffer pages. Produce N / B sorted runs of B pages each.
– Pass 1..k: use B-1 buffer pages to merge B-1 runs, and use 1 buffer 

page for output.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

. . . . . 
.

. . .
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General External Merge Sort (B=4)

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

8,94,4 6,72,3 19,328,8 13,161,510,153,3 5,61,2

1,1

Pass 0: Read four unsorted pages, sort them, and write them out.
Produce 3 runs of 4 pages each.

Pass 1: Read three pages, one page from each of 3 runs, merge them, 
and write them out.  Produce 1 run of 12 pages.

2,2 3,3 …

merging

start start start
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Cost of External Merge Sort

• # of passes: 1 + ceiling(log B-1 ceiling(N/B))
• Disk I/O Cost = 2*N*(# of passes)
• E.g., with 5 buffer pages, to sort 108 page file:

– Pass 0: ceiling(108/5) = 22 sorted runs of length 5 pages 
each (last run is only 3 pages) 

– Pass 1: ceiling(22/4) = 6 sorted runs of length 20 pages 
each (last run is only 8 pages)

– Pass 2:  2 sorted runs, of length 80 pages and 28 pages
– Pass 3:  Sorted file of 108 pages
– # of passes = 1 + ceiling (log 4 ceiling(108/5)) = 4
– Disk I/O costs = 2*108*4 = 864
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# Passes of External Sort
          N B=3 B=5 B=9 B=17 B=129 B=257 

100 7 4 3 2 1 1 
1,000 10 5 4 3 2 2 
10,000 13 7 5 4 2 2 
100,000 17 9 6 5 3 3 
1,000,000 20 10 7 5 3 3 
10,000,000 23 12 8 6 4 3 
100,000,000 26 14 9 7 4 4 
1,000,000,000 30 15 10 8 5 4 
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Further Optimization Possible?

• Opportunity #1: create bigger length run in pass 0
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– How to keep both CPU & disks busy at the same time?
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Opportunity 1: create bigger runs on the 
1st pass

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

Current 
Set Buffer
Input 
Buffer
Output 
Buffer

20

Replacement Sort (Optimize 
Merge Sort)

• Pass 0 can output approx. 2B sorted pages on average.  How?
• Divide B buffer pages into 3 parts:

– Current set buffer (B-2): unsorted or unmerged pages.
– Input buffer (1 page): one unsorted page.
– Output buffer (1 page): output sorted page. 

• Algorithm:
– Pick the tuple in the current set with the smallest k value > largest 

value in output buffer.  
– Append k to output buffer.
– This creates a hole in current set, so move a tuple from input buffer to 

current set buffer.
– When the input buffer is empty of tuples, read in a new unsorted page.
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Replacement Sort Example (B=4)

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

3,4 6,2

9,4

Current 
Set Buffer
Input 
Buffer
Output 
Buffer

3,4 6,2

9,4

3,4 6,9

4

2

4,4 6,9

2,3

8,7

8,4 6,9

4

7

2,3On disk

When do you start a new run?
All tuple values in the current set < the last tuple value in output buffer
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Minimizing I/O Cost vs. Number of I/Os

• So far, the cost metric is the number of disk I/Os.
• This is inaccurate for two reasons:

– (1) Block I/O is a much cheaper (per I/O request) than 
equal number of individual I/O requests. 

• Block I/O: read/write several consecutive pages at the same time.

– (2) CPU cost may be significant.
• Keep CPU busy while we wait for disk I/Os.
• Double Buffering Technique.
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Further Optimization Possible?

• Opportunity #1: create bigger length run in the 1st round
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks is much faster than 

separate blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– How to keep both CPU & disks busy at the same time?

24

General External Merge Sort (B=4)
How to change it to Block I/O (block = 2 pages)?

8,76,2 9,43,4 32,813,8 19,116,515,33,1 2,105,6

8,94,4 6,72,3 19,328,8 13,161,510,153,3 5,61,2

1,1

Pass 0: Read four unsorted pages, sort them, and write them out. Produce 
3 runs of 4 pages each.

Pass 1: Read three pages, one page from each of 3 runs, merge them, and 
write them out.  Produce 1 run of 12 pages.

2,2 3,3 …

merging

start start start
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Block I/O

• Block access: read/write b pages as a unit.
• Assume the buffer pool has B pages, and file has N pages.
• Look at cost of external merge-sort (with replacement 

optimization) using Block I/O:
– Block I/O has little affect on pass 0.

• Pass 0 produces initial N’ (= N/2B) runs of length 2B pages.

– Pass 1..k, we can merge F = B/b – 1 runs.
– The total number of passes (to create one run of N pages) is 1 + logF

(N’).
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Further Optimization Possible?

• Opportunity #1: create bigger length run in the 1st round
– First sorted run has length B.
– Is it possible to create bigger length in the first sorted runs?

• Opportunity #2: consider block I/Os
– Block I/O: reading & writing consecutive blocks
– Can the merge passes use block I/O?

• Opportunity #3: minimize CPU/disk idle time
– While CPU is busy sorting or merging, disk is idle.
– How to keep both CPU & disks busy at the same time?
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Double Buffering
• Keep CPU busy, minimizes waiting for I/O requests.

– While the CPU is working on the current run, start to prefetch data 
for the next run (called shadow blocks).

• Potentially, more passes; in practice, most files still sorted in 
2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge
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Using B+ Trees for Sorting

• Assumption: Table to be sorted has B+ tree index on 
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf 
pages.

• Is this a good idea?
• Cases to consider:

– B+ tree is clustered
– B+ tree is not clustered
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Clustered B+ Tree Used for Sorting
• Cost: root to the left-

most leaf, then retrieve 
all leaf pages 
(Alternative 1)

• If Alternative 2 is used?  
Additional cost of 
retrieving data records:  
each page fetched just 
once.

• Cost better than 
external sorting?

(Directs search)

Data Records

Index

Data Entries
("Sequence set")
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Unclustered B+ Tree Used for 
Sorting

• Alternative (2) for data entries; each data entry 
contains rid of a data record.  In general, one I/O 
per data record.

(Directs search)

Data Records

Index

Data Entries
("Sequence set")
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External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100 

100 200 100 1,000 10,000 

1,000 2,000 1,000 10,000 100,000 

10,000 40,000 10,000 100,000 1,000,000 

100,000 600,000 100,000 1,000,000 10,000,000 

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000 

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000 
 

 

* p: # of records per page
* B=1,000 and block size=32 for sorting
* p=100 is the more realistic value.

32

We are done with Chapter 13

Chapter 14 (only section 14.4)
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Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1

WHERE  R1.sid=S1.sid
• R ∞ S is very common, so must be carefully optimized.  
• R X S is large; so, R X S followed by a selection is inefficient.
• Assume: M pages in R, pR tuples per page, N pages in S, pS

tuples per page.
– In our examples, R is Reserves and S is Sailors.

• We will consider more complex join conditions later.

34

Two Classes of Algorithms to 
Implement Join Operation

• Algorithms in class 1 require enumerating all tuples in the 
cross-product and discard tuples that do not meet the join 
condition.
– Simple Nested Loops Join
– Blocked Nested Loops Join

• Algorithms in class 2 avoid enumerating the cross-product.
– Index Nested Loops Join
– Sort-Merge Join
– Hash Join
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Simple Nested Loops Join

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result
• For each tuple in the outer relation R, scan the entire 

inner relation S (scan S total of pR * M times!). 
– Cost:  M +  pR * M * N =  1000 + 100*1000*500  I/Os => 

very huge.

• How can we improve simple nested loops join?
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Page Oriented Nested Loops Join

foreach page of R do
foreach page of S do

for all matching tuples r in R-block and 
s in S-page, add <r, s> to result

• Cost:  M + M*N = 1000 + 1000*500 = 501,000  => 
still huge.

• If smaller relation (S) is outer, cost = 500 + 
500*1000 = 500,500 
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Block Nested Loops Join

foreach block of B-2 pages of R do
foreach page of S do

for all matching tuples r in R-block and
s in S-page, add <r, s> to result

• Use one page as an input buffer for scanning the 
inner S, one page as the output buffer, and use all 
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add  <r, 

s> to result.  Then read next R-block, scan S, etc.

38

Block Nested Loops Join: Efficient 
Matching Pairs

• If B is large, it may be slow to find matching pairs between 
tuples in S-page and R-block (R-block has B-2 pages).

• The solution is to build a main-memory hash table for R-block.

. . .

. . .

R & S
Hash table for block of R

Input buffer for S Output buffer

. . .

Join Result
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Examples of Block Nested Loops
• Cost:  Scan of outer +  #outer blocks * scan of inner

– #outer blocks = ceiling (# of pages of outer / blocksize)
• With Reserves (R) as outer, and 102 buffer pages:

– Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
– Per block of R, scan Sailors (S);  10*500 I/Os.
– Total cost = 1000 + 10 * 500 = 6000 page I/Os => huge improvement 

over page-oriented nested loops join.
• With 100-page block of Sailors as outer:

– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves;   5*1000 I/Os.
– Total cost = 500 + 5*1000 = 5500 page I/Os 

• For blocked access (block I/Os are more efficient), it may be 
best to divide buffers evenly between R and S.
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Index Nested Loops Join
foreach tuple r in R do

foreach tuple s in S where ri == sj do
add <r, s> to result

• If there is an index on the join column of one relation (say S),
can make it the inner and exploit the index.

– Cost:  M + ( (M*pR) * cost of finding matching S tuples) 
• For each R tuple, cost of probing S index is about 1.2 for hash 

index, 2-4 for B+ tree.  Cost of finding S tuples (assume Alt. 
(2) or (3) for data entries) depends on clustering.

– Clustered index:  1 I/O (typical)
– Unclustered index: up to 1 I/O per matching S tuple.
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Examples of Index Nested Loops

• Hash-index (Alt. 2) on sid of Sailors (as inner):
– Scan Reserves:  1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple:  1.2 I/Os to get data entry in index, plus 1 I/O to get (the 

exactly one) matching Sailors tuple.  
– Total:  100 0+ 100,000 * 2.2 =  221,000 I/Os.

• Hash-index (Alt. 2) on sid of Reserves (as inner):
– Scan Sailors:  500 page I/Os, 80*500 tuples.
– For each Sailors tuple:  1.2 I/Os to find index page with data entries, plus cost of 

retrieving matching Reserves tuples.  
– Assume uniform distribution, 2.5 reservations per sailor (100,000 / 40,000).  Cost of 

retrieving them  is 1 or 2.5 I/Os depending on whether the index is clustered.
– Total (Clustered): 500 + 40,000 * 2.2 = 88,500 I/Os. 

• Given choices, put the relation with higher # tuples as inner loop.
• Index Nested Loop performs better than simple nested loop.
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Sort-Merge Join

• Sort R and S on the join column [merge-sort], then scan them 
to do a ``merge’’ (on join col.) [scan-merge], and output 
result tuples.

• Scan-merge:
– Advance scan of R until current R-tuple >= current S tuple, then 

advance scan of S until current S-tuple >= current R tuple; do this until 
current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R group) and 
all S tuples with same value in Sj (current S group) match;  output <r, 
s> for all pairs of such tuples.

– Then resume scanning R and S.
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Scan-Merge
sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
28 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

28 103 12/4/96 guppy 
28 103 11/3/96 yuppy 
31 101 10/10/96 dustin 
31 102 10/12/96 lubber 
31 101 10/11/96 lubber 
58 103 11/12/96 dustin 

 

 

Gs

Tr

1

1

2

3

4

5

6

2a

2b

Ts

3a

3b 5a

5b

6a

6b
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Cost of Merge-Sort Join

• R is scanned once; each S group is scanned once per matching 
R tuple.  (Multiple scans of an S group are likely to find 
needed pages in buffer.)

• Cost:  2 (M log M + N log N) + (M+N)
– Assume enough buffer pages to sort both Reserves and Sailors in 2 

passes
– The cost of merge-sorting two relations is 2 M log M +  2 N log N.
– The cost of scan-merge two sorted relations is M+N.
– Total join cost: 2*2*1000 + 2*2*500 + 1000 + 500 = 7500 page I/Os. 

• Any possible refinement to reduce cost?
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Refinement of Sort-Merge Join
• Combine the merging phase in sorting with the scan-merge for 

the join.
– Allocate one buffer space for each run (in the merge pass) in R & S.
– Buffer size B >  squar_root(L), where L is the size of the larger relation. 

Why?
• # runs = 2(L/2B) = L/B < B [replacement sort]

– Cost: read+write each relation in Pass 0 + read each relation in (only) 
merging pass  (not counting the writing of result tuples).

– Cost goes down from 7500 to 4500 I/Os

L

R S

scan-mergesort-merge
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Hash Join

• Hash both relations on the join attribute using the 
same hash function h.
– Tuples in R-partition_i (bucket) can only match with tuples

in S-partition_i. 

• For i=1..k, check for matching pairs in R-partition_i
and S-partition_i.

• For efficient matching pairs, apply hashing to tuples
of R-partition using another hash function h2.
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Hash-Join
• Partition both 

relations using hash fn 
h:  R tuples in 
partition i will only 
match S tuples in 
partition i.

• Read in a partition of 
R, hash it using h2 
(<> h!). Scan 
matching partition of 
S, search for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .
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Observations on Hash-Join

• #partitions k < B-1 (need one buffer page for reading), and B-
2 > size of largest partition to be held in memory.  

• Assume uniformly sized partitions, and maximize k, we get:
– k= B-1,  and B-2 > M/(B-1),  i.e.,  B must be > square_root(M)

• If we build an in-memory hash table to speed up the matching 
of tuples, a little more memory is needed.

• If the hash function does not partition uniformly, one or more 
R partitions may not fit in memory.  Can apply hash-join 
technique recursively to do the join of this R-partition with 
corresponding S-partition.

M
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Cost of Hash-Join

• In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

• In our running example, this is a total of 4500 I/Os.
• Sort-Merge Join vs. Hash Join:

– Same amount of buffer pages.
– Same cost of 3(M+N) I/Os.  
– Hash Join shown to be highly parallelizable.
– Sort-Merge less sensitive to data skew; result is sorted.
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Complex Join Conditions

• So far, we have only discussed single equality join 
condition.

• How about equalities over several attributes? (e.g.,  
R.sid=S.sid AND R.rname=S.sname):
– For Index Nested Loops join, build index on <sid, sname> 

on R (if R is inner); or use existing indexes on sid or 
sname.

– For Sort-Merge and Hash Join, sort/partition on 
combination of the two join columns.


