Database Systems

10.8, 2008 Lecture #4

Course Administration

- Assignment #1 is due next Wed (outside 336/338).
- Course slides will now have black background
 - Printer friendly: set the printing color to "black-white"
- Next week reading:
 - Chapter 5 SQL

Mischief (<u>Video</u>, MIT/Stanford) 30 mice & 1 PC in a classroom

Reflection: DB design

- Step 1: Requirements Analysis
 - What data to store in the database?
- Step 2: Conceptual Database Design
 - Come up with the design: Entity-Relation (ER) model
 - Sketch the design with entity-relationship diagrams
- Step 3: Logical Database Design
 - Implement the design: relational data model
 - Map ER diagrams to relational tables
- What's next (after creating all these nice tables)?

What's next?

- How to ask questions about the [relational] database?
 - How much money in account XYZ?
 - Who are valuable customers [∑ deposits > 1M]?
 - Find the better 3-4 combination in MLB that is better (on-based percentage) than Ramirez and Ortiz (Boston Red Sox).
- Two query languages
 - Relational algebra [CH4] : a Math query language
 - SQL [CH5] : a Real query Language

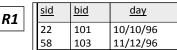
5

Relational Algebra

Chapter 4.1 – 4.2

Relational Query Languages

- What are query languages?
 - For asking questions about the database
- Relational Algebra
 - Mathematical Query Languages form the basis for "real" languages (e.g. SQL) and for implementation.
 - A relational query is composed using a small set of operators $(\pi, \sigma, \infty, X, ...)$
 - Like +, -, *, / operators in algebra


7

Preliminaries

- A query is applied to table(s), and the result of a query is also a table.
 - Schema of input table(s) for a query is fixed.
 - Schema for the result of a given query is also fixed! Determined by definition of query language constructs.
- Example of a relational algebra expression:
 - Find the names of sailors who have reserved boat 103

 $\pi_{sname}((\sigma_{bid=103} Reserves) \sim Sailors)$

Example Tables

- Sailors and Reserves are tables.
- Can refer to the fields by their positions or names:
- Assume names of fields in the result table are inherited from names of fields in input tables.

<u> </u>	2.0	<u> </u>
22	101	10/10/96
58	103	10/10/96 11/12/96
	22 58	

	<u>sid</u>	sname	rating	age
S1	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0
		-		

	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
<i>S2</i>	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0
	•			

Relational Algebra

- Basic relational algebra operators:
 - Selection (σ, pronounced sigma): Select a subset of rows from a table.
 - Projection (π) : Delete unwanted columns from a table.
 - Cross-product (X): Combine two tables.
 - Set-difference (): Tuples in table 1, but not in table 2.
 - Union (*U*): Tuples in tables 1 or 2.
- Each operator takes one or two input table(s), and returns one table.

Relational Algebra (more)

- Additional relational algebra operators:
 - Intersection (\cap): Tuples in tables 1 and 2.
 - Join (∞): conditional cross product
 - Division (/): will explain later
 - Renaming (p, pronounced "row")
- · Operations can be composed to form a very complex query

$$\pi_{sid} \ (\sigma_{age>20} \ Sailors) \ -$$

$$\pi_{sid} \ ((\sigma_{color="red"} \ Boats) \ \infty \ Reserves \ \infty \ Sailors)$$

11

Relational Operators

- Projection
- Selection
- Union
- Intersection
- Set difference
- Cross product

- · Rename operator
- Join
- Division

Projection

- Delete attributes not in projection list.
- Duplicates eliminated
- Find ages of sailors in S2
- Find names of sailors in S2

sname	rating
уирру	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

S2

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

age	
35.0	
55.5	
$\pi_{age}(S)$	(2)

13

Relational Operators

- Projection
- Selection
- Union
- Intersection
- Set difference
- Cross product

- Rename operator
- Join
- Division

Selection

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

- Selects rows satisfying selection condition.
 - with duplicate removal
- Result table can be fed into other operations
- Find (names, ratings) of sailors whose ratings are greater than 8.
- Find names of sailors whose ages are greater than 40.

	$\sigma_{rating>8}^{(S2)}$
--	----------------------------

1	
rating	
9	
10	
	rating 9 10

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

 $\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$

15

Relational Operators

- Projection
- Selection
- Union
- Intersection
- Set difference
- Cross product

- Rename operator
- Join
- Division

Union

- Take two input tables, which must be unioncompatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- What is the schema of result?
- Find sailors in S1 or S2.

S2

S1

-				
l	sid	sname	rating	age
l	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0
	44	guppy	5	35.0
l	28	yuppy	9	35.0

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
	<u> </u>		

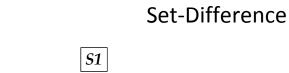
ı	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
1	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

 $S1 \cup S2$

17

Intersection

*S*1


*S*2

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

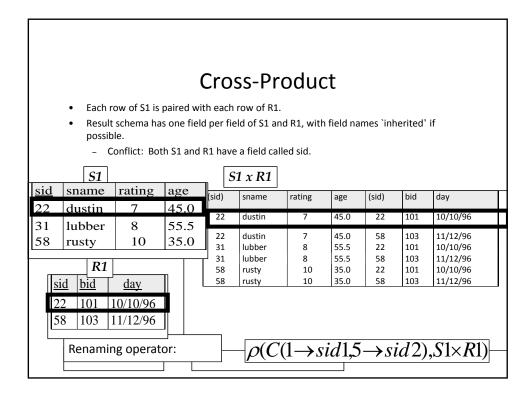
 $S1 \cap S2$

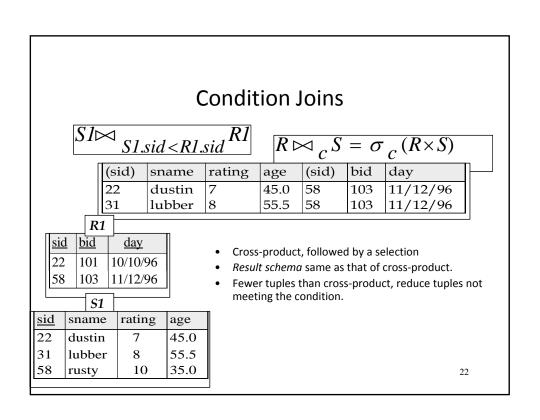
sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

*S*2


١	ه: ما	an a na a	ratio a	
	sid	sname	rating	age
	22	dustin	7	45.0
		G 4	CO.	
			$S2 \qquad \lceil$	


19

Relational Operators

- Projection
- Selection
- Union
- Intersection
- Set difference
- Cross product

- Rename operator
- Join
- Division

Equi-Joins

- ullet A special case of condition join where the condition c contains only equalities.
- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join (∞): Equi-join on all common fields.

	sid	bid	day	$ box{\colored}$	<u>sid</u>	sn	name	rating	age	е
R1 	22	101	10/10/96	S1	22	dι	ıstin	7	45	.0
1.1	58	101	11/12/96		31	lu	bber	8	55	.5
l	50	103	11/12/90]	58	ru	ısty	10	35	.0
_	П	id	cm cm c		1000		hid I	darr		
$S1 \bowtie R1$	$\neg \mathbb{L}^{s}$	iu	sname	rating	age		bid	day		
sid $R1$	2	22	dustin	7	45.0)	101	10/10/	96	
L	− 5	8	rusty	10	35.0)	103	11/12/	96	
	-					•				-

Example of Join

- Find the names of sailors who have reserved at least a boat.
 - π_{sname}(R1 ∞ S1)
 - $\pi_{sname}(R1 \sim R1.sid = S1.sid S1)$
 - $\pi_{sname}(R1 \infty sid S1)$

	<u>sid</u>	<u>bid</u>	<u>day</u>
R1	22	101	10/10/96
	58	103	11/12/96

	sid	sname	rating	age
S1	22	dustin	7	45.0
31	31	lubber	8	55.5
	58	rusty	10	35.0

Relational Operators

- Projection
- Selection
- Union
- Intersection
- Set difference
- Cross product

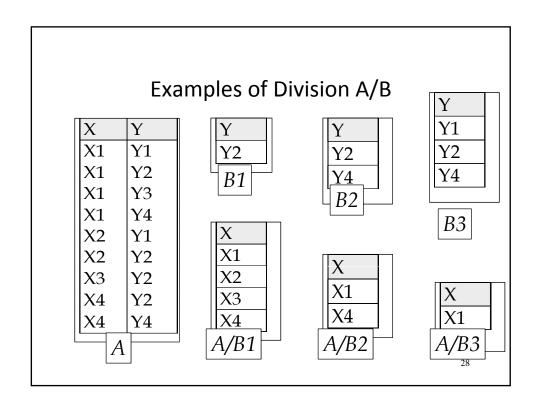
- · Rename operator
- Join
- Division

25

Division: analogy to integer division

- Two integers: A, B
 - A/B = Q, Q is the largest integer such that $Q * B \le A$
- How about relational tables A, B?
 - A/B = Q, Q is the largest table such that $Q \times B \le A$
- Look at Q X B in A
 - Q must be a subset of attributes in A
 - Q's attributes + B's attributes = A's attributes
 - A's tuples must contain all pairings <q in Q, b in B>

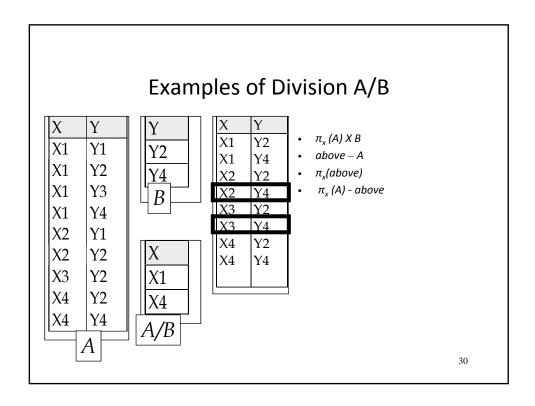
Division


- Reserves(sailor_name, boat_id); Boats (boat_id)
 - Useful for expressing queries like:

Find sailors who have reserved all boats => Reserves / Boats

• Let A have 2 fields, x and y; B have only field y:

$$- A/B = \left\{ \left\langle x \right\rangle \mid \exists \left\langle x, y \right\rangle \in A \ \forall \left\langle y \right\rangle \in B \right\}$$


 A[xy]/B[y] contains all x tuples (sailor_name) such that for every y tuple (boat_id) in B, there is an xy tuple in A.

Expressing A/B Using Basic Operators

- Idea: For A(xy)/B(y), compute all x values that are not disqualified by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.
 - 1) Iterate through each x value
 - 2) Check: combined with each y value, xy in A? If not, disqualify.
- Disqualified x values:

 A/B =

Practices with Relational Operators

31

(Q1) Find names of sailors who've reserved boat #103

Reserves(sid, bid, day) Sailors(sid, sname, rating, age)

- Solution 3 (using rename operator)
- Solution 1: $\pi_{sname}(\sigma_{bid=103} (Reserves \infty Sailors))$
- Solution 2 (more efficient)

 $\pi_{sname}((\sigma_{bid=103} \, Reserves) \infty$ Sailors) $P(Temp1, \sigma_{bid=103} Reserves)$ P(Temp2, Temp1 ∞ Sailors) π_{sname} (Temp2)

(Q2) Find names of sailors who've reserved a red boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

· Solution?

 $\pi_{\textit{sname}}((\sigma_{\textit{color} = \textit{'red'}} \textit{Boats}) \sim \textit{Reserves} \sim \textit{Sailors}~)$

• A more efficient solution (# of disk access)? $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color="red"}Boats) \sim Reserves~) \sim Sailors~)$

A query optimizer can find this, given the first solution!

33

(Q3) Find the colors of boats reserved by Lubber

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

Solution?

 $\pi_{color}((\sigma_{sname = `Lubber'}, Sailor) \sim Reserves \sim Boats)$

(Q4) Find the names of sailors who have reserved at least one boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

• Solution?

 π_{sname} (Sailor ∞ Reserves)

35

(Q5) Find the names of sailors who have reserved a red or a green boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

• Solution?

 $\pi_{sname}(\sigma_{color='red'\ or\ color=\ 'green'}\ Boats ext{\sim Reserves \sim Sailors)}$

(Q6) Find the names of sailors who have reserved a red and a green boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

• Wrong solution:

 $\pi_{sname}(\sigma_{color='red'\;and\;color=\;'green'}\;Boats \bowtie Reserves \leadsto Sailors)$

- What's wrong with the above?
- A correct solution?

 $\pi_{sname}(\sigma_{color='red'} Boats \sim Reserves \sim Sailors) \Pi \pi_{sname}(\sigma_{color='green'} Boats \sim Reserves \sim Sailors)$

37

(Q7) Find the names of sailors who have reserved at least two different boats

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

- Strategy?
 - Join a table (sid, bid, sname): sailors reserving at least one boat
 - Cross-product the table with itself
 - Select sailors with two different boats reserved

P (Reservations, C(1->sid1, 2->sid2, 3->bid1, 4->bid2) $\pi_{sid,sname,bid}$ (Sailors ∞ Reserves)) $\pi_{sname}(\sigma_{(sid1=sid2) \& (bid1\neq bid2)}$ Reservations \times Reservations)

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

- Strategy
 - Find all sailors (sids) with age over 20
 - Find all sailors (sids) who have reserved a red boat
 - Take their set differences

 π_{sid} ($\sigma_{age > 20}$ Sailors) $-\pi_{sid}$ (($\sigma_{color= 'red'}$ Boats) ∞ Reserves)

39

(Q9A) Find the names of sailors who have reserved all boats

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

- Strategy
 - Use division; all = division
 - what divides by what? Solution

 $\pi_{sname}((\pi_{sid,bid} (Reserves) / \pi_{bid} (Boats)) \infty Sailors)$

(Q9') Find the names of sailors who have reserved boats with all different colors

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

- Strategy
 - what divides by what?
 - (sid, color) / (color)
- Solution

 π_{sname} (($\pi_{sid,color}$ (Reserves ∞ Boats) / π_{color} (Boats)) ∞ Sailors)

41

(Q10) Find the names of sailors who have reserved all boats called "Interlake"

Reserves(sid, bid, day) Sailors(sid, sname, rating, age) Boats(bid, bname, color)

• Previous solution?

 π_{sname} (($\pi_{sid,bid}$ (Reserves) / π_{bid} (Boats)) ∞ Sailors)

• How to modify it?

 $\pi_{sname} \left(\left(\pi_{sid,bid} \left(Reserves \right) / \pi_{bid} \left(\sigma_{bname='Interlake'} \; Boats \right) \right) \sim Sailors \right)$

More Exercises

43

employee(<u>person-name</u>, street, city) works(<u>person-name</u>, <u>company-name</u>, salary) company(<u>company-name</u>, <u>city</u>) manages(<u>person-name</u>, manager-name)

- (a) Find the names of all employees who work for First Bank Corporation.
- (b) Find the names and cities of residence of all employees who work for First Bank Corporation.
- (c) Find the names, street address, and cities of residence of all employees who work for First Bank Corporation and earn more than \$10,000 per annum.

employee(person-name, street, city)
works(person-name, company-name, salary)
company(company-name, city)
manages(person-name, manager-name)

- (d) Find the names of all employees in this database who live in the same city as the company locates for which they work.
- (e) Find the names of all employees who live in the same city and on the same street as do their managers.
- (f) Find the names of all employees in this database who do not work for the First Bank Corporation.

45

employee(<u>person-name</u>, street, city) works(<u>person-name</u>, company-name, salary) company(<u>company-name</u>, city) manages(<u>person-name</u>, manager-name)

- (g) Find the names of all employees who earn more than every employee of Small Bank Corporation.
- (h) Assume the companies may be located in several cities. Find all companies located in every city in which Small Bank Corporation is located.
- (i) Find the names of employees who work for more than 3 (included) companies.