

Database Systems

Instructor: Hao-Hua Chu, Winston Hsu

Fall Semester, 2010

Assignment 5: B+ Tree

Deadline: 23:59pm December 22 (Wednesday), 2010

This is a group assignment, and at most 2 students per group are allowed.

Cheating Policy: If you are caught cheating, your grade is 0.

Late Policy: We will not accept any assignment submissions after Wednesday.

1. Introduction

In this assignment, you will implement a B+ tree in which leaf level pages contain

entries of the form [key, rid of a data record] (Alternative 2 for data entries, in terms

of the textbook.) You must implement the full search and insert algorithms as

discussed in class. In particular, your insert routine must be capable of dealing with

overflows (at any level of the tree) by splitting pages. Deletes will be handled by

simply marking the corresponding leaf entry as 'deleted'. You do not need to

implement merging of nodes on deletes or sibling redistribution on inserts.

You will be given HFPage and SortedPage. SortedPage is derived from HFPage, and

it augments the insertRecord method of HFPage by storing records on the HFPage in

sorted order by a specified key value. The key value must be included as the initial

part of each inserted record, to enable easy comparison of the key value of a new

record with the key values of existing records on a page. The documentation available

in the header files is sufficient to understand what operation each function performs.

In this assignment, we provide two page-level classes, BTIndexPage and BTLeafPage,

both of which are derived from SortedPage. These page classes are used to build the

B+ tree index. You will write code to create, destroy, open and close a B+ tree index.

You have to fill in all member functions in the btfile.C. We will also provide

BTreeFileScan that will open a scan on the B+ tree, allowing its caller to iterate

through all of the data entries (from the leaf pages) that satisfy some search criterion.

2. Design Overview

You should begin by reading the chapter Tree Structured Indexing of the textbook to

get an overview of the B+ tree layer. There is also information about the B+ tree layer

in the HTML documentation.

2.1 A Note on Keys for this Assignment

You should note that key values are passed to functions using void * pointers

(pointing to the key values). The contents of a key should be interpreted using the

AttrType variable. The key can be either a string(attrString) or an integer(attrInteger),

as per the definition of AttrType in minirel.h. We just implement these two kinds of

keys in this assignment. If the key is a string, it has a fixed maximum length,

MAX_KEY_SIZE1, defined in bt.h.

Although the specifications for some methods (e.g., the constructor of BTreeFile)

suggest that keys can be of (the more general enumerated) type AttrType, you can

return an error message if the keys are not of type attrString or attrInteger.

The SortedPage class, which augments the insertRecord method of HFPage by storing

records on a page in sorted order according to a specified key value, assumes that the

key value is included as the initial part of each record, to enable easy comparison of

the key value of a new record with the key values of existing records on a page.

2.2 B+ Tree Page-Level Classes

There are four separate pages classes, of which you will implement only one. HFPage

is the base class (given), and from it is derived SortedPage. You won’t derive

BTIndexPage and BTLeafPage from SortedPage. Note that, as in the HFPage

assignment, you must not add any private data members to BTIndexPage or

BTLeafPage.

• HFPage: This is the base class, you can look at hfpage.h to get more details.

• SortedPage: This class is derived from the class HFPage. Its only function is to

maintain records on a HFPage in a sorted order. Only the slot directory is

rearranged. The data records remain in the same positions on the page. This

exploits the fact that the rids of index entries are not important: index entries

(unlike data records) are never `pointed to' directly, and are only accessed by

searching the index page.

• BTIndexPage: This class is derived from SortedPage. It inserts records of the

type [key, pageNo] on the SortedPage. The records are sorted by the key.

• BTLeafPage: This class is derived from SortedPage. It inserts records of the type

[key, dataRid] on the SortedPage. dataRid is the rid of the data record. The

records are sorted by the key. Further, leaf pages must be maintained in a doubly

linked list.

For further details about the individual methods in these classes, look at the header

pages for the class.

Lastly, we provide a structure to represent the header page of the B+ tree. Despite its

name, the data structure used to represent the header page need not be derived from a

Page object. It can be implemented simply as a C++ struct, with a field for each piece

of information that must be stored in the header page. Just remember to cast pointers

to this struct as (Page *) pointers when making calls to functions such as pinPage().

2.3 Other B+ Tree Classes

We will assume here that everyone understands the concept of B+ trees, and the basic

algorithms, and concentrate on explaining the design of the C++ classes.

A BTreeFile will contain a header page and a number of BTIndexPages and

BTLeafPages. The header page is used to hold information about the tree as a whole,

such as the page id of the root page, the type of the search key, the length of the key

field(s) (which has a fixed maximum size in this assignment), etc. When a B+ tree

index is opened, you should read the header page first, and keep it pinned until the file

is closed. Given the name of the B+ tree index file, how can you locate the header

page? The DB class has a method

Status add_file_entry(const char* fname, PageId header_page_num);

that lets you register this information when a file fname is created. There are similar

methods for deleting and reading these `file entries' ([file name, header page] pairs) as

well, which can be used when the file is destroyed or opened (See db.h). The header

page contains the page id of the root of the tree, and every other page in the tree is

accessed through the root page.

The following two figures show examples of how a valid B+ Tree might look.

Figure 1 shows what a BTreeFile with only one BTLeafPage looks like; the single

leaf page is also the root. Note that there is no BTIndexPage in this case.

Figure 2 shows a tree with a few BTLeafPages, and this can easily be extended to

contain multiple levels of BTIndexPages as well.

2.3.1 IndexFile and IndexFileScan

A BTree is one particular type of index. There are other types, for example a Hash

index. However, all index types have some basic functionality in common. We've

taken this basic index functionality and created a virtual base class called IndexFile.

You won't write any code for IndexFile. However, any class derived from an

IndexFile should support IndexFile(), Delete(), and insert(). (IndexFile and

IndexFileScan are defined in /include/index.h).

Likewise, an IndexFileScan is a virtual base class that contains the basic functionality

all index file scans should support.

2.3.2 BTreeFile

The main class to be implemented for this assignment is BTreeFile. BTreeFile is a

derived class of the IndexFile class, which means a BTreeFile is a kind of IndexFile.

However, since IndexFile is a virtual base class all of the methods associated with

IndexFile must be implemented for BTreeFile.

The methods to be implemented include:

BTreeFile::insert The BTreeFile::insert method takes two arguments: (a pointer to) a

key and the rid of a data record. The data entry to be inserted---i.e., a `record' in the

leaf pages of the BTreeFile ---consists of the pair [key, rid of data record].

If a page overflows (i.e., no space for the new entry), you should split the page. You

may have to insert additional entries of the form [key, id of child page] into the higher

level index pages as part of a split. Note that this could recursively go all the way up

to the root, possibly resulting in a split of the root node of the B+ tree.

BTreeFile::new_scan The BTreeFile::new_scan routine takes two arguments a

lo_key and a hi_key. You have to create a scan with given keys under all possible

conditions.

BTreeFile::Delete There are two types of delete, Naïve Delete and Full Delete. The

Naïve Delete do not implement redistribution and page merging when the number of

entries falls below threshold. The Naïve Delete is the default delete function and we

already provide the code of this part.

2.3.3 BTreeFileScan

Finally, you won’t implement scans that return data entries from the leaf pages of

the tree. You will create the scan through a member function of BTreeFile

(BtreeFile::new_scan(...) as defined in btfile.h). The parameters passed to

new_scan() specify the range of keys that will be scanned in the B+ tree. They are

explained in detail in btfile.h.

2.4 Errors

In the Buffer Manager assignment, you learned how to use the Minibase error

protocol. Reviewing it now would be a good idea. In that assignment, all the errors

you returned belonged to one of the categories in new error.h, namely BUFMGR. In

this assignment, you will need to use BTREE, BTLEAFPAGE, and BTINDEXPAGE.

3. A Note on Program Submission

Submit your program per group via email to TA, 204ta@csie.ntu.edu.tw. The

email title must be “[DB10] hw5 ID1 ID2 version”, (Ex.”[DB10]hw5 b95902080

b95902091 v1”). You can submit your program many times, and TA will use that

latest one to grade. In addition, each group h a s t o hand in a one-page report to

illustrate how you implement this assignment.

