Database Systems

(=S 22 8)

December 16, 2009

Announcement

e The correct (compile-able) version of Assignment #5 (B+ Tree)
was on the course homepage last Friday.
— Itis due next Wed

Overview of Transaction Management

Chapter 16

Transaction

¢ Transaction = one execution of a user program.
— Example: transfer money from account A to account B.
— ASequence of Read & Write Operations
e How to improve system throughput (# transactions executed
per time unit)?
— Make each transaction execute faster (faster CPU? faster disks?)
— What’s the other option?

Concurrent Execution

e Why concurrent execution is needed?
— Disk accesses are slow and frequent - keep the CPU busy by running
several transactions at the same time.
¢ Have you written multi-threaded programs? What is so
difficult about writing them?

— Concurrency Control ensures that the result of concurrent execution
of several transactions is the same as some serial (one at a time)
execution of the same set of transactions.

— How can the results be different?

Non-serializable Schedule

e Aisthe number of available Tl T2
copies of a book = 1. R(A=1)
e T1 wants to buy one copy. Check if
A>0
e T2 wants to buy one copy. (A>0) R(A<1)
¢ What is the problem here? - .
Check if
— T1getsan error. (A>0)
e The result is different from any serial
schedule T1,T2 or T2,T1 W(A=0)

» How to prevent this problem? W(A=0)

— How to detect a schedule is Commit

serializable? Commit

System crash

¢ Must also handle system crash in the middle of a transaction

(or aborted transactions).

— Crash recovery ensures that partially aborted transactions are not

seen by other transactions.

— How can the results be seen by other transactions?

Unrecoverable Schedule

TI deducts $100 from A.
T2 adds 6% interests to A.
T2 commits.

T1I aborts.

Why is the problem?

— Undo Tl => T2 has read a value for A that
should never been there.

— But T2 has committed! (may not be able to undo
committed actions).

— This is called unrecoverable schedule.
Is this a serializable schedule?

How to ensure/detect that a schedule is
recoverable (& serializable)?

T1 T2

R(A)

W(A-100)
R(A)
W(A+6%)
Commit

Abort

Outline

¢ Four fundamental properties of transactions (ACID)
— Atomic, Consistency, Isolation, Durability

¢ Schedule actions in a set of concurrent transactions

¢ Problems in concurrent execution of transactions

¢ Lock-based concurrency control (Strict 2PL)

¢ Performance issues with lock-based concurrency control

ACID Properties

e The DBMS's abstract view of a transaction: a sequence of
read and write actions.

e Atomic: either all actions in a transaction are carried out or
none.
Transfer $100 from account A to account B: R(A), A=A-100, W(A), R(B),
B=B+100, W(B) => all actions or none (retry).
The system ensures this property.
— How can a transaction be incomplete?
e Aborted by DBMS, system crash, or error in user program.
How to ensure atomicity during a crash?

¢ Maintain a log of write actions in partial transactions. Read the log and
undo these write actions.

10

ACID Properties (2)

¢ Consistency: run by itself with no concurrent execution leave
the DB in a “good” state.
— This is the responsibility of the user.

— Noincrease in total balance during a transfer => the user makes sure
that credit and debit the same amount.

11

ACID Properties (3)

¢ |solation: transactions are protected from effects of
concurrently scheduling other transactions.
— The system (concurrency control) ensures this property.

— The result of concurrent execution is the same as some order of serial
execution (no interleaving).

— T1 || T2 produces the same result as either
e T1;T20rT2;T1.

12

ACID Properties (4)

¢ Durability: the effect of a completed transaction should
persist across system crashes.

— The system (crash recovery) ensures durability property and atomicity
property.

— What can a DBMS do to ensure durability?

— Maintain a log of write actions in partial transactions. If the system
crashes before the changes are made to disk from memory, read the
log to remember and restore changes when the system restarts.

13

Schedules

¢ Atransaction is seen by DBMS as a list of read and write
actions on DB objects (tuples or tables).

— Denote R{(0), W+(O) as read and write actions of transaction T on
object O.

¢ Atransaction also needs to specify a final action:
— commit action means the transaction completes successfully.
— abort action means to terminate and undo all actions
¢ Aschedule is an execution sequence of actions (read, write,
commit, abort) from a set of transactions.
— Aschedule can interleave actions from different transactions.
— Aserial schedule has no interleaving actions from different
transactions.

14

Examples of Schedules

Schedule with

Interleaving Execution Serial Schedule
TI T2 TI T2
R(A) R(A)
W(A) W(A)
R(B) R(C)
W(B) W(C)
Commit Commit
R(C) R(B)
Commit Commit
15
Concurrent Execution of Transactions
Why do concurrent executions of transactions? T1 T2
— Better performance. R(A)
— Disk I/O is slow. While waiting for disk I/O on
one transaction (T1), switch to another W(A)
transaction (T2) to keep the CPU busy.
System throughput: the average number of R(B)
transactions completed in a given time (per second). W(B)
Response Time: difference between transaction
completion time and submission time. Commit
— Concurrent execution helps response time of
small transaction (T2). R(C)
w(cC)
Commit

16

Serializable Schedule

* A serializable schedule is a schedule that

TI T2
produces identical result as some serial
R(A)
schedule.
. . . . W(A)
— A serial schedule has no interleaving actions from
multiple transactions. R(A)
* We have a serializable schedule of T| & T2. w®A)
— Assume that T2:W(A) does not influence R(B)
T1:W(B). W(B)
— It produces the same result as executing T then R(B)
T2 (denote T1;T2). W(B)
Commit
Commit

17

Anomalies in Interleaved Execution

¢ Under what situations can an arbitrary (non-serializable)
schedule produce inconsistent results from a serial schedule?
— Three possible situations in interleaved execution.
e Write-read (WR) conflict
¢ Read-write (RW) conflict
o Write-write (WW) conflict

— Note that you can still have serializable schedules with the above
conflicts.

18

WR Conflict (Dirty Read)

Situation: T2 reads an object that has been

modified by T1, but T1 has not committed. Tl T2
T1 transfers $100 from A to B. T2 adds 6% R(A)
;2'terests to A and B. A non-serializable schedule W(A-100)
— Step 1: deduct $100 from A. R(A)
— Step 2: add 6% interest to A & B. W(A+6%)
— Step 3: credit $100 in B.
P ° R(B)
Why is the problem?
— The result is different from any serial schedule -> W(B+6%)
Bank adds $6 less interest. Commit
A Transaction must leave DB in a consistent
state after it completes! R(B)
W(B+100)
Commit
19
RW Conflicts (Unrepeatable Read)
Situation: T2 modifies A that has been T1 T2
read by T1, while T1 is still in progress. R(A==1)
— When T1 tries to read A again, it will get a -
different result, although it has not Checkif (A>0)
modified A in the meantime. R(A==1)
What is the problem? Check if (A>0)
A is the number of available copies of a W(A=0)
book = 1. T1 wants to buy one copy. T2
wants to buy one copy. T1 gets an error. W(A)
— The result is different from any serial Error!
schedule Commit
Commit
20

10

WW Conflict (Overwriting
Uncommitted Data)

T1 wants to set salaries of Harry & Larry
to ($2000, $2000). T2 wants to set them
to (51000, $1000).
What wrong results can the left schedule
produce?
— The left schedule can produce the results
($1000, $2000).
— The result is different from any serial
schedule.
— This is called lost update (T2 overwrites
T1’s A value, so T1’s value of A is lost.)

Tl T2

W(A=2000)
W(A=1000)
W(B=1000)
Commit

W (B=2000)

Commit

21

Schedules with Aborted Transactions

Serializable schedule needs to produce
the correct results under aborted
transactions.

— For aborted transactions, undo all their
actions as if they were never carried
out (atomic property).

What is the problem?

— Undo TI => T2 has read a value for A
that should never been there. But T2
has committed! (may not be able to
undo committed actions).

— This is called unrecoverable schedule.

Tl T2

R(A)

W(A-100)
R(A)
W(A+6%)
R(B)
W(B+6%)
Commit

Abort

22

11

Another Problem in Undo

e Undo T1: restore value of A to
before T1’s change (A=5).
e What is the Problem?

— T2’schange to A is also lost, even if
T2 has already committed.

TI T2
A=5
R(A)
W(A) Il A=6
R(A)
W(A) Il A=7
R(B)
W(B)
Commit
Abort

23

Lock-Based Concurrency Control

» Concurrency control ensures
that

— (I) Only serializable, recoverable
schedules are allowed

— (2) Actions of committed
transactions are not lost while
undoing aborted transactions.

* How to guarantee safe
interleaving of transactions’
actions (serializability &
recoverability)?

TI T2
A=5
R(A)
W(A) Il A=6
R(A)
W(A) Il A=7
R(B)
W(B)
Commit
Abort

24

12

Lock-Based Concurrency Control

e Strict Two-Phase Locking (Strict 2PL)

¢ Alock is a small bookkeeping object associated with a DB
object.

— Shared lock: several transactions can have shared locks on the same
DB object.

— Concurrent read? Concurrent write?

— Exclusive lock: only one transaction can have an exclusive lock on a DB
object.

— Concurrent read? Concurrent write?

25

Strict 2PL

e Rule #1: If a transaction T wants to read an object, it requests
a shared lock. Denote as S(O).

e Rule #2: If a transaction T wants to write an object, it requests
an exclusive lock. Denote as X(O).

¢ Rule #3: When a transaction is completed (aborted), it
releases all held locks.

26

13

Strict 2PL

e What happens when a transaction cannot obtain a lock?
— It suspends

e Why shared lock for read?
— Avoid RW/WR conflicts

e Why exclusive lock for write?
— Avoid RW/WR/WW conflicts

* Requests to acquire or release locks can be automatically
inserted into transactions.

Example #| of Strict 2PL

TI T2 TI T2
S(A) S(A) []
R(A) R(A) e
X(©) X(B) -
R(C) R(B)]
W(C) W(B) |
Commit Commit
[T

L]

L]

L]

"

Example #2 of Strict 2PL

TI T2

i ™2 —]

X(A) X(A)

R(A) R(A) [

W(A) W(A) L]

o) —

R(B) R(B)

we) we)]

Commit // Commiit // :l

release locks release locks

29
(13 4 " .
Strict” 2PL seems too strict!?
possible for better concurrency?

TI T2 TI T2 TI T2

X(A) X(A) X(A) Suspend X(A) Suspend

R(A) R(A) R(A) R(A)

W(A) W(A) W(A) W(A)

X(B) X(B) X(B) X(B)

R(B) R(B) R(B) R(B)

W(B) W(B) W(B) W(B)

Commit // Commit // Commit // Release X(A)

release release release locks . X(B)

locks locks X(A)

Commit
R(A))
W(A) RA)
X(B) W)
R(B) RB)
W(B) W(E)
Commit // .
release locks fe?en;::fol::ks
30

15

2PL: without strict

TI T2
What is the tradeoff for better concurrency? | X(A) Suspend
R(A)
W(A)
TI T2 X(B)
X(A) X(A) Release X(A)
R(A) R(A) X(A)
W(A) W(A) R(A)
X(B) X(B) W(A)
R(B) R(B) R(B)
W(B) W(B) W(B)
Commit Commit// Release X(B)
Il release release
locks locks Commit
X(B)
R(B)
W(B)
Release X(A)
Release X(B)
Commit 31
2PL: what if T
TI T2
X(A S d
aborts? &
R(A)
W(A)
TI T2 X(B)
X(A) X(A) Release X(A)
R(A) R(A) X(A)
W(A) W(A) R(A)
X(B) X(B) W(A)
R(B) R(B) R(B)
W(B) W(B) W(B) // abort!
Commit Commit // Release X(B)
Il release release
locks locks Commit
X(B)
R(B)
W(B)
Release X(A)
Release X(B)
Commit 32

16

Try “Strict” 2PL & Interleaving Executin

TI T2 TI T2
X(A) X(B) L1
R(A) R(B) I*—'—I
W(A) W(B)
X(B) X(A) L]
R(B) R(A)
W(B) W(A) []
Commit // Commit // I_,_‘_,_I
release locks release locks |:|
33
Deadlocks
e T1 and T2 will make no further TI T2
progress. X(A)
¢ Two ways to handle deadlock: X(B)
— Prevent deadlocks from occurring. Request X(B)
. Blocked!
— Detection deadlocks and resolve
them. Request X(A)
Blocked too!

¢ Detect deadlocked transactions
by timeout (assuming they are
waiting for a lock for too long)
Abort the transactions.

34

17

Deadlocks

¢ T1 and T2 will make no further
progress.

¢ How to handle deadlock (two ways)?
— Prevent deadlocks from occurring.
— Detect deadlocks and resolve them.

¢ How to do deadlock prevention
and detection?

TI T2
X(A)
X(B)
Request
X(B)
Blocked!
Request
X(A)
Blocked
too!

35

Performance of Locking

e Lock-based schemes are designed to
resolve conflicts between
transactions. It has two mechanisms:

— Blocking: waiting for a lock.
— Aborting: waiting for too long, restarting
it.

e Both have costs and may impact
throughput (# transactions
completed per second).

e Very common system graph on the
left

Throughput

Active Transactions

36

18

Performance of Locking

e More active transaction executing
concurrently
— Potentially higher concurrency gain
— And higher the probably of blocking.

e Thrashing can occur when too many

blocked transactions (or aborted
transactions).

Throughput

e How to guard against thrashing?

Active Transactions

37

Improve Throughput

e Prevent thrashing: monitor % blocked transactions and
reduce the number of active transactions executing
concurrently.

e Other methods to improve throughputs:

— Lock the smallest sized objects possible (reduce the likelihood of two
transactions need the same lock).

— Reduce the time that transaction hold locks (reduce blocking time of
other transactions)

— Reduce hot spots (hot spots = frequently accessed and modified
objects).

38

19

What to Lock in SQL?

e Option 1: table granularity

T1:shared lockon S

T2: exclusive lock on S
Big sized object -> low
concurrency (T1 no|| T2)

e Option 2: row granularity

T1: shared lock on rows with
rating = 8.

T2: exclusive lock on rows with
S.name="Joe” AND S.rating=8
Smaller granularity -> better
concurrency (T1 || T2)

<T1>

SELECT S.rating, MIN(S.age)
FROM Sailors S

WHERE S.rating=8

<T2>

UPDATE Sailors S

SETS.age=10

WHERE S.name=“Joe” AND
S.rating=8

39

20

