United States Patent

US007234111B2

(12) 10) Patent No.: US 7,234,111 B2
Chu et al. 45) Date of Patent: Jun. 19, 2007
(54) DYNAMIC ADAPTATION OF GUI 6,285,366 Bl* 9/2001 Ngetal .ccooeoreenennne 715/853
PRESENTATIONS TO HETEROGENEOUS 6,310,601 B1* 10/2001 Moore et al. 345/660
DEVICE PLATFORMS 6,317,143 B1* 11/2001 Wugofskic.cccceeeen. 345/765
6,353,448 B1* 3/2002 Scarborough et al. 715/744
(75) Inventors: Hae-hua Chu, Mountain View, CA (Continued)
(US); Hoi Lee Candy Wong, Santa
Clara, CA (US); Yu Seng, San Carlos, FOREIGN PATENT DOCUMENTS
CA (US); Shoji Kurakake, San P 07-244568 9/1995
Francisco, CA (US) .
(Continued)
(73) Assignee: NTT Docomo, Inc., Tokyo (JP) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Rist, Thomas, Brandmeier, Patrick, Gerd, Herzog, and Andre,
patent is extended or adjusted under 35 Elisabeth, “Getting the Mobile Users in: Three Systems that Support
U.S.C. 154(b) by 502 days. Collaboration in an Environment with Heterogeneous Communi-
cation Devices”, ACM, May 2000, pp. 250-254.*
(21) Appl. No.: 09/967,167 (Continued)
(22) Filed: Sep. 28, 2001 Primary Examiner—William Bashore
Assistant Examiner—L. Ries
(65) Prior Publication Data (74) Attorney, Agent, or Firm—DBlakely, Sokoloff, Taylor &
US 2004/0163046 Al Aug. 19, 2004 Zafman LLP
(51) Int.CL (57) ABSTRACT
GOGF 17/00 (2006.01) A system for dynamically adapting a presentation generated
(52) US.CL ..o 715/517; 715/526; 715/762 with a scalable application to a display screen of any of a
(58) Field of Classification Search 345/762, plurality of heterogeneous device platforms is disclosed.
345/733,788; 715/517, 518, 520, 521, 526, The system includes a device platform and a transformation
715/700, 733, 762, 788 module. The device platform is one of the heterogeneous
See application file for complete search history. device platforms and includes a display screen. The device
. platform is operable to initiate generation of a hierarchical
(56) References Cited

U.S. PATENT DOCUMENTS

5,583,983 A * 12/1996 Schmitter 717/138
5,845303 A * 12/1998 Templeman 715/517
5,895477 A * 4/1999 Orr et al. 715/517
5,956,738 A * 9/1999 Shirakawa ... 715/517
5,969,717 A * 10/1999 Ikemoto 345/762
6,037,939 A * 3/2000 Kashiwagi et al. 345/798
6,097,382 A * 82000 Rosenetal. 345/762

configuration representing a plurality of graphical user inter-
face components. The transformation module is operable to
selectively arrange the graphical user interface components
on a page as a function of the hierarchical configuration. In
the addition, the transformation module is operable to selec-
tively transform the graphical user interface components to
maximize the fill of the display screen by the page.

50 Claims, 10 Drawing Sheets

YES

SELECT
HIGHEST
PRIORITY
NODE

NO

e

e OTHER
SIBLINGS LAID

PREVIOUSLY
LAID OUT? YES

7

UNDERFILLED?.

ouT?

IDENTIFY RELATED
NODE FROM NEXT
HIGHEST LEVEL

126

PAGE NO

" eAacE |
SUBST. FULL

148

“~ALLOCATE
NEW PAGE

140

MORE LOWEST
LEVEL NODES?

US 7,234,111 B2
Page 2

U.S. PATENT DOCUMENTS

6,429,882 B1* 8/2002 Abdelnur et al. 345/763
6,636,250 B1* 10/2003 Gasser
6,650,347 B1* 11/2003 Nulu et al. .
6,765,578 B2* 7/2004 Slavin

2002/0167543 Al* 11/2002 Smith et al. 345/762
2003/0200254 Al* 10/2003 Wei ..coovvviniviiiinniinnnnn, 709/203
FOREIGN PATENT DOCUMENTS

JP 08-263243 10/1996

OTHER PUBLICATIONS

Miyashita, Ken, Matsuoka, Satoshi, Takahashi, Shin, and
Yonezawa, Akinori, “Interactive Generation of Graphical User

Interfaces by Multiple Visual Examples”, ACM, Nov. 1994, pp.
85-94 *

“UIML Reference Manual”, Harmonia, In¢, Dec. 1997, downloaded
from http://www.uiml.org/specs/docs/uiml_v10_ref PDF, pp.
1-132.*

“User Interface Markup Language (UIML) Draft Specification”,
Harmonia, Inc, Version 7, Jan. 2000, downloaded from http://www.
uiml.org/specs/docs/uiml20-17Jan00.pdf, pp. 1-64.*

Eisenstein, J., Vanderdonckt, J. and Puerta, A., “Applying Model-
Based Techniques to the Development of Uls for Mobile Comput-
ers,” Proc. of IUI’01, Jan. 14-17, 2001.

Eisenstein, J., Vanderdonckt, J. and Puerta, A., “Adapting to Mobile
Contexts with User-Interface Modeling,” In Proceedings of
WMCSA’ 00, Dec. 2000.

* cited by examiner

US 7,234,111 B2

Sheet 1 of 10

Jun. 19, 2007

U.S. Patent

HIOVNVYIN
HIAANIY

for

¢ 9Old

\@N J

HOLVISNVY.L LNINS
N9 3N18V1VIS

\wm

NOILVINISTHd3d
J1VIA3INAILNI

4

\N

AdYH4dlIT LININOJINOD
N9 31aVv1vOsS

|

|

| HIADVYNYIN HADVYNVYIN . ‘q,m«m_.m: NS
. | | NOLLYIWYO4SNVYL | 'd3¥ ASV.L | d3d 319V1vOS
Q3IWE3LNI ! C ‘3NN ILNI N ! "O3NH3LNI \
INEVEEE] 0e JaNnyd 8L IINJANIIANI -

0 70 & JE Sttt i W ERINEl
¥l
o—"

>

US 7,234,111 B2

Sheet 2 of 10

Jun. 19, 2007

U.S. Patent

¢ 9Old

——— — —
- V-

/ 2y
g
__
| ey /
_,
\
/
\ Hyr
/
\
\
HpEpEL
\
/
My </ rzv ez’ | Ot/ AN

ary—’ oy~

op \\. vy~

US 7,234,111 B2

Sheet 3 of 10

Jun. 19, 2007

U.S. Patent

v 9Old

\ltl
1S LNINOJINOD
nos ‘ 3AIND FTALS
oo) LNOAY OINYNAG KN@
- o N
S31NY
NOILYINYOASNYYHL
N9 3LISOANOD
s ININOINOD
S31NY
NOILYINHO4SNYHL ONIZIS3Y
NS 31dNIS J
z5
g —t LNINOLINOD IAILYNHILTY
e
S31NY NOILLYWHOASNYYL
HIOVYNVIN NOILYIWHOASNYNL

09

L

0g

0¢

US 7,234,111 B2

Sheet 4 of 10

Jun. 19, 2007

U.S. Patent

[Ewmﬁ_ 'IYOLS FONIYISTYd

HOIH | Emo_mn_

ALILNVNO
JNVN ANVHd
JNVN N3 LI

-LINN/301dd d3.103dX3

88

‘ALILNVYND |

S31LY3d0ud
. JNVN n_z<mm

-JNVN _>_m._._

_>_m._._ Oz_n_n_OIw Dn<

WNIg3N

&m&“w&«gﬁvxv%%&mg%««m&ﬁm

R R R R B R R S R R R R SRR R R B SRR RERY

U.S. Patent Jun. 19, 2007

Sheet 5 of 10

INITIATE
TRANSFORMATION

US 7,234,111 B2

100
/

MODULE
]

Y

IDENTIFY LOWEST
LEVEL/HIGHEST
PRIORITY NODE

1
—

0

Y

APPLY STYLE
GUIDE

PARAMETERS
|

Y
PLACE SGUI
COMPONENTS

ON PAGE

o) (o

104

} 108

DETERMINE |
PAGE SIZE

PAGE
OVERFILLED?

FIG. 7

U.S. Patent Jun. 19, 2007 Sheet 6 of 10 US 7,234,111 B2

L’i/ l
SELECT AND APPLY

TRANSFORMATION
RULES

'

GENERATE LIST

Y

IDENTIFY SGUI
COMPONENTS FROM
] LIST

114

\

-
N
o

\

\=
[0 0]

YES MORE THAN

ONE? |
I +
CHOOSE HIGHEST | 125 122 SELECTED
RANKING SGUI “— IDENTIFIED SGUI
COMPONENT COMPONENT
l |
y
124
c L MNTERCHANGESGUI‘J
L COMPONENTS

FIG.8

U.S. Patent Jun. 19, 2007 Sheet 7 of 10 US 7,234,111 B2

B
NO
14& PAGE
SIBLING SUBST. FULL
NODES LAID
NO ouT? YES 148 ,
- ALLOCATE
130 NEW PAGE
ﬁEhEE%TT 3 ‘ - IDENTIFY RELATED
PRIORITY NODE FROM NEXT
NODE HIGHEST LEVEL
ROOT
CONTAINER YES—
NODE?
PREVIOUSLY
LAID OUT? YES
N
0 140
(of
SIBLINGS LAID YES
NO ouT?

142 MORE LOWEST
SELECT SIBLING LEVEL NODES? N¢O
NODE VES
END

e

FIG. 9

US 7,234,111 B2

Sheet 8 of 10

Jun. 19, 2007

U.S. Patent

0L 9Old

- — 802
802 HIOUNVIN |

- bl — B

oL/ mma*zmm f{-!--::li_

| HIOVYNYIN |

RENRVELS J A¥Y¥EITIND | |
Y -zl | |

g0z’ .| NOILVOIlddV | YIOVUNYW |

31aviv
- > S R
T
00z——" r_\,_moﬁin_ 30IN3d | coc ol _ NOLLVWOJSNVYL

U.S. Patent Jun. 19, 2007

Sheet 9 of 10 US 7,234,111 B2

APPLICATION

LAUNCH/
MIGRATE
SCALABLE

PLATFORM
GENERATE IR

DEVICE

TREE?

250
ey

INSTANTIATE
IR TREE

y

L

TRANSMIT IR TREE
TO
TRANSFORMATION
SERVER

254
A 258 256
TRANSMIT MOBILE CODE _J -
TO TRANSFORMATION
SERVER
‘ 260
INSTANTIATE =
IR TREE

Y

264

TRANSMIT TARGET DEVICE |_y
PLATFORM CAPABILITY TO
TRANSFORMATION SERVER

' 266
PRUNEIR | /

TREE

|

INITIATE

TRANSFORMATION
OF IR TREE

268

e

FIG. 11

U.S. Patent Jun. 19, 2007 Sheet 10 of 10 US 7,234,111 B2

D

A 270
TRANSMIT CUSTOMIZED |

IR TREE TO TARGET
DEVICE PLATFORM |

¢ 272

INITIATE INSTANTIATION —
OF SGUI COMPONENTS

SGUI
COMPONENTS
AVAILABLE ?

NO YES

278\ l l /' 276

DISPLAY APPLICATION

DOWNLOAD SGUI GUI ON DISPLAY

COMPONENTS I SCREEN

FIG. 12

US 7,234,111 B2

1

DYNAMIC ADAPTATION OF GUI
PRESENTATIONS TO HETEROGENEOUS
DEVICE PLATFORMS

FIELD OF THE INVENTION

The present invention relates generally to graphical user
interfaces (GUI) and, more particularly, to a scalable GUI
architecture to adapt applications to the user interface of
different heterogeneous device platforms.

BACKGROUND OF THE INVENTION

Personal electronic devices such as personal computers,
personal digital assistants (PDAs), wireless telephones and
pagers have become prevalent in recent years. These devices
allow mobile computing by communication over wireless
and/or wireline networks. The networks provide intercon-
nection of these mobile devices with information sources as
well as other similar devices. Commonly, the networks
include communication over the Internet.

Typically, mobile computing devices include some form
of user interface (UI). The nature of the user interface on a
device is a function of the computing power and the hard-
ware represented on the device. For example, a wireless
telephone has limited computing power and a relatively
small graphical user interface (GUI) with limited graphics
and user interface capability. Conversely, a notebook per-
sonal computer has relatively extensive graphics capability,
user interface capability and computing power. As the popu-
larity of mobile devices increases, the main device platform
for applications may shift from desktop personal computers
to mobile devices.

One significant difficulty with developing applications for
mobile devices is device heterogeneity. Due to variations in
display size, display resolution, command input methods
and GUI libraries, an application developer may have to
re-design and re-implement applications for the graphical
user interfaces (GUIs) of each device platform. With the
large number of different mobile devices currently available,
or coming into the market, re-design and re-implementation
may be an ongoing, labor intensive and cost prohibitive
endeavor.

One solution is through the development of model-based
techniques. An exemplary model-based technique is user
interface modeling. In general, user interface modeling
involves a platform model, a presentation model and a task
model. The platform model describes the operational func-
tionality forming the user interface for each device sup-
ported. The presentation model, describes the hierarchy,
stylistic choices, selection and placement regarding the
visual appearance of the user interface associated with the
supported device(s). The task model identifies tasks that a
user of the supported device(s) may perform. With this
technique, mappings between the various models may be
developed to produce a user interface for a particular device.

Implementation of the model-based approach typically
includes development of a high level language to implement
the models. In addition, developers typically build and
specify significant portions of the models to support the
devices. Since the high level language is fairly complex,
developers usually must learn the language, as well as the
execution mechanics, prior to implementing the model-
based approach. Further, model-based approaches typically
generate code based on the different model(s) that the
developer builds. Slight differences in the user interface
requirements of a device may result in considerable differ-

20

25

30

35

40

45

50

55

60

65

2

ences in the code generated for two seemingly similar
devices. Accordingly, the complexity and level of program-
ming expertise required by the developer is significant.

SUMMARY OF THE PRESENT INVENTION

The present invention discloses a non-model based scal-
able graphical user interface (SGUI) architecture. The SGUI
architecture allows scaleable applications to operate on any
of a plurality of heterogeneous device platforms. The scale-
able applications may include an application graphical user
interface (GUI). The application GUI may be adapted by the
SGUI architecture to operate with the user interface of one
of the heterogeneous device platforms on which the scale-
able application is operating. Application developers may
build application GUIs that are independent of the user
interface capabilities within each of the heterogeneous
device platforms without the complexities of the model-
based approach. In addition, many of the complexities of
user interfaces and GUI libraries associated with each of the
heterogeneous device platforms may be avoided by appli-
cation developers by utilizing the SGUI architecture.

The SGUI architecture includes a scalable GUI library, a
customizing module and a render manager module. The
customizing module includes a task manager module and a
transformation manager module. When a scaleable applica-
tion is launched or migrated to one of the heterogeneous
device platforms (which may be referred to as a target device
platform) an intermediate representation of the application
GUI is instantiated by the scaleable application. The inter-
mediate representation is a device platform independent
logic structure that may include at least one logical panel and
representation of at least one graphical user interface (GUI)
component in a hierarchical configuration. Nodes within the
intermediate representation may include container nodes
representing the logical panels and component nodes repre-
senting the graphical user interface components.

The intermediate representation may be dynamically cus-
tomized by the customizing module based on the capabilities
of the target device platform, as well as properties specified
by application developers of the application GUI. Customi-
zation of intermediate representation converts the platform
independent logic structure to a platform dependent logic
structure.

A portion of the customization may be performed with the
task manager module. The task manager module may selec-
tively retain the logical panels and the graphical user inter-
face components within the intermediate representation.
Those logical panels and/or graphical user interface com-
ponents suitable for the target device platform may be
selected for retention in the intermediate representation.

The transformation manager module may perform
another portion of the customization. The transformation
manager module may dynamically configure the graphical
user interface components and logical panels based on the
hierarchy of the logic structure and constraints specified by
the application GUI. The graphical user interface compo-
nents and logical panels may be arranged on at least one
page of a presentation as first part of the dynamic configu-
ration. The presentation may be displayed on a display
screen of the target device platform. In addition the trans-
formation manager may also selectively transform the
graphical user interface components to adjust the size of the
page(s) and maximize the fill of the display screen as a
second part of the dynamic configuration. Selective trans-
formation of the graphical user interface components may

US 7,234,111 B2

3

include resizing the components and selecting alternative
graphical user interface components based on transforma-
tion rules.

Following customization, the render manager module
may traverse the customized intermediate representation to
produce the application GUI on the display screen of the
target device platform. The graphical user interface compo-
nents and the logical panels may be extracted from the logic
structure to create the application GUI.

The application GUI has been adapted to operate on the
user interface of one of the heterogeneous device platform.
As such, the device platform independent application GUI
has been dynamically transformed into a device platform
dependent application GUI by the SGUI architecture.

An interesting feature of the SGUI architecture involves
the transformation manager module. The transformation
manager module may generate a set of proposed device
platform dependent pages. At least one of the device plat-
form dependent pages may be selected to display the appli-
cation GUI. Selection may be based on identifying the
page(s) that provide the most desirable display on the
display screen.

Another interesting feature is the use of transformation
rules by the transformation module. The transformation
rules may be selectively applied to GUI components to
generate a list of possible GUI components. The transfor-
mation module may then select one of the GUI components
from the list to interchange with the GUI component cur-
rently represented by a component node in the intermediate
representation.

Other features and advantages of the invention will be
apparent from the drawings and the more detailed descrip-
tion of the invention that follows. The foregoing discussion
of the presently preferred embodiments has been provided
only by way of introduction. Nothing in this section should
be taken as a limitation on the following claims, which
define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an embodiment of a scalable
graphical user interface architecture.

FIG. 2 is a more detailed block diagram of a portion of the
scalable graphical user interface architecture depicted in
FIG. 1.

FIG. 3 is a block diagram of one example embodiment of
an intermediate representation utilized by the scalable
graphical user interface architecture of FIG. 1.

FIG. 4 is a more detailed block diagram of another portion
of the scalable graphical user interface architecture depicted
in FIG. 1.

FIG. 5 is one embodiment of an exemplary transformation
of a graphical user interface component using the scalable
graphical user interface architecture depicted in FIG. 1.

FIG. 6 is one embodiment of an exemplary transformation
of'a composite graphical user interface component using the
scalable graphical user interface architecture depicted in
FIG. 1.

FIG. 7 is a flow diagram illustrating operation of one
embodiment of the scalable graphical user interface archi-
tecture illustrated in FIG. 1.

FIG. 8 is second portion of the flow diagram illustrated in
FIG. 7.

FIG. 9 is a third portion of the flow diagram illustrated in
FIG. 7.

20

25

30

35

40

45

50

55

60

65

4

FIG. 10 is one embodiment of a communication system
that includes devices operating with the scalable graphical
user interface architecture depicted in FIG. 1.

FIG. 11 is a flow diagram illustrating operation of the
scalable graphical user interface architecture within the
communication system illustrated in FIG. 10.

FIG. 12 is a second portion of the flow diagram illustrated
in FIG. 11.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE
INVENTION

The presently preferred embodiments describe a scalable
graphical user interface architecture (SGUI) for use with
scalable applications capable of operating on any of a
plurality of different heterogeneous device platforms. The
scalable applications may be dynamically adapted by the
SGUI architecture to operate with a variety of user interfaces
associated with the different heterogeneous device plat-
forms. The SGUI architecture allows the scaleable applica-
tions to be designed with user interface capabilities that are
independent of the different heterogeneous device platforms
on which the scalable application may be run. Use of the
SGUI architecture by application developers of scaleable
applications may avoid many coding complexities otherwise
experienced with scaling to different user interfaces associ-
ated with different heterogeneous device platforms. In addi-
tion, the SGUI architecture operates with different hetero-
geneous device platforms without the construction of
models as in the model-based techniques. As such, program-
ming by application developers is relatively less sophisti-
cated, and model building and/or model manipulation exper-
tise is unnecessary.

Scalable applications include any applications capable of
operating on different heterogeneous device platforms.
Many scalable applications include the capability to gener-
ate a presentation for a display screen of one of the hetero-
geneous device platforms. Presentations may include one or
more pages (or presentation units) of visual material. The
visual material may be arranged on the display screen for
user of the heterogeneous device platforms. Scalable appli-
cations may generate presentations with application GUIs.
Application GUIs are the graphical user interface compo-
nent of the scalable application.

The different heterogeneous device platforms may be any
device that includes a display screen and the capability to
run a scalable application. Exemplary heterogeneous device
platforms include wireless phones, pocket personal comput-
ers (PCs), personal device assistants (PDAs), pagers, desk-
top computers, notebook computers, on board vehicle com-
puters or any other wireline/wireless device with a display
screen that is capable of executing a scalable application.
The heterogeneous device platforms may include an oper-
ating system such as, for example, Window NT™, Windows
2000™, Linux™, Solaris™, MacOS™, Palm™, Windows
CE™, proprietary operating systems or any other operating
system providing functionality to the device. The operating
systems may provide capability to launch and support scal-
able applications.

The heterogeneous device platforms may also include any
other hardware and software to provide functionality as well
as operate the scaleable application. For example, the het-
erogeneous device platforms may include a storage mecha-
nism such as, for example, a memory. The storage mecha-
nism may store, for example, the operating system, scaleable
applications and any other information pertaining to the

US 7,234,111 B2

5

device platform. In addition, the heterogeneous device plat-
forms may include a user interface. The user interface may
include, for example, a device display, a key board, a
pointing device similar to a mouse, a touch screen, a keypad,
audio capabilities or any other mechanism providing an
interface for a user of one of the heterogeneous device
platforms.

The capabilities of the heterogeneous device platforms
may vary widely. As used herein, “capabilities” include
those hardware features and device functionality that may
impact operation of scaleable applications as well as the
operation of each of the heterogeneous device platforms.
Capabilities of heterogeneous device platforms may include,
for example, the type of device platform (e.g. wireless
phone, PDA, laptop PC, etc.), the available user interfaces
library, the size of the display screen and the resolution of
the display screen. Further exemplary capabilities include
user interfaces related to the display screen, the amount of
computing power, the size of the memory, uses of the
platform or any other parameters affecting the user interface
and operation of a device platform.

In the presently preferred embodiments, the heteroge-
neous device platforms are mobile devices executing scal-
able applications created with Java technology. Java tech-
nology includes a Java programming language operating on
a Java Virtual Machine (Java VM). The Java VM may be
ported on to various device platforms. Exemplary imple-
mentations of Java technology includes Java VM operating
on a notebook PC device platform, Personal Java VM on a
pocket PC device platform and Java KVM operating on a
wireless phone device platform. In other embodiments, other
device platforms, as well as other programming languages/
technologies, may be used with the SGUI architecture. Other
programming languages/technologies include, for example,
C, C++, Microsoft™ C sharp (C##) and/or any other tech-
nologies.

The SGUI architecture enables scalable applications to
instantiate an intermediate representation of an application
GUI associated with the scalable applications. The applica-
tion GUI as well as the intermediate representation are
preferably non-device specific (e.g. device platform inde-
pendent), but compatible with the heterogeneous device
platforms. Creation of an instance of the intermediate rep-
resentation may be based on the application GUI of a
scalable application. The intermediate representation may
provide a logic structure for presentations generated by
scalable applications. The logic structure may be customized
for any of the different heterogeneous device platforms by
the SGUI architecture. Customization may be based on
properties specified in the application GUI as well as the
capabilities of one of the heterogeneous device platforms
targeted to display the presentation. More specifically, cus-
tomization by the SGUI architecture addresses three issues
common to graphical user interface development for het-
erogeneous device platforms, namely, display size, input
methods and user interface libraries.

Display Size—A scalable application is typically capable
of operation on many different heterogeneous device plat-
forms. As such, application programmers developing scal-
able applications may not assume any specific size for the
display screen. For example, a DOCOMO 503i wireless
phone may include a 120x130 pixels display screen, a
COMPAQ IPAQ Pocket PC may include a 320x240 pixels
display screen, and a typical Notebook personal computer
may include a 1024x768 pixels display screen. The display
screen size may impact the quality of visual presentation as

20

25

30

35

40

45

50

55

60

65

6

well as the layout of components forming pages of the
presentation on the display screen.

The components forming the pages may be referred to as
graphical user interface (GUI) components. GUI compo-
nents are displayed features of the presentation that may be
fixed, animated and/or interactive in the context of a display
screen. Exemplary GUI components include, graphical
labels, graphical buttons, graphical check boxes, graphical
text fields, graphical texts areas, graphical lists/tables,
graphical backgrounds, data entry fields, pull down menus
and/or any other features capable of display on a display
screen. GUI components may be stored in a GUI library with
a unique identifier. The identifier allows applications, such
as, for example, the previously discussed application GUIs
to build a presentation with GUI components.

Presentations may be subdivided into pages as a function
of the size of the display screen. A relatively large display
screen, such as, for example, the display screen of a note-
book PC, may be capable of accommodating larger pages
with larger size and/or larger quantities of GUI components.
On the other hand, a small display screen, such as, for
example, on a wireless phone, may only accommodate
relatively small pages with highly compact GUI compo-
nents. In addition, the smaller pages may allow fewer GUI
components to be displayed at the same time on the display
screen.

The SGUI architecture may be utilized to maximize the
fill of the display screen of heterogeneous device platforms.
Utilizing the intermediate representation, the SGUI archi-
tecture may provide dynamic layout and graphical user
interface (GUI) transformation of the application GUIs. As
such, the application GUIs may be scaled to the display
screen of one of the heterogeneous device platforms on
which the scalable application is currently operating.

Input Methods—Different heterogeneous device plat-
forms may also include different input methods associated
with the scalable application and the application GUIs. For
example, a wireless phone may use a keypad as an input
method, a Pocket PC may uses a stylus as an input method
and a Notebook PC may use a keyboard and/or a mouse-like
pointing device as an input method. Accordingly, application
developers developing scalable applications may not assume
specific input methods for associated application GUIs.

The SGUI architecture provides device platform indepen-
dent GUI events that are scalable to the different heteroge-
neous device platforms. GUI events are changes of state
within the visual material on a page. Interaction by a user
with the user interface (UI) of one of the heterogeneous
device platforms may result in a GUI specific GUI events to
device platform independent GUI events. As such, scaleable
applications utilizing the SGUI architecture may be
designed with GUI event functionality compatible with, but
independent of, the user interface of the different heteroge-
neous device platforms.

User Interface Libraries—Heterogeneous device plat-
forms may also support different application program inter-
faces (APIs). An API is one of a collection of ready-made
software components providing a wide range of functional-
ity. For example, Java technology includes Java Application
Programming Interface (APIs). Java APIs are a collection of
software components providing “off the shelf” capability
that may be implemented within Java based programs.

The Java platform claims to be write once, run anywhere
(WORA), however, this may not be true for Java applica-
tions developed in the mobile device environment. In a
wireless telephone, for example, the Java programming
language may be Java 2 micro edition (J2ME). In general,

US 7,234,111 B2

7

the design of J2ME is based on flexibility and fragmentation.
To achieve flexibility, J2ME defines device platform-spe-
cific APIs. The device platform specific APIs are referred to
as a profile. The different profiles result in fragmentation
since J2ME applications may be written to run only on a
particular device platform. For example, a DoCoMo 503i
wireless phone may support a profile of Java referred to as
J2ME DolJa APIs. Similarly, a Pocket PC may support the
Personal Java AWT APIs and a Notebook PC may support
Java 2 standard edition (J2SE) SWING APIs.

The APIs may support different GUI libraries depending
on the heterogeneous device platforms. For example, a PDA
may include more touch screen related GUI components in
a corresponding GUI library. On the other hand, a wireless
phone, for example, may include only indication related
GUI components in a corresponding GUI library. As known
in the art, GUI libraries are compilations of pre-developed
GUI components that may be accessed to produce a pre-
sentation.

The SGUI architecture of one embodiment provides
device platform independent APIs compatible with, and
supported on, different heterogeneous device platforms. The
device platform independent APIs provide a bridging func-
tion to the different GUI libraries associated with different
heterogeneous device platforms. Accordingly, application
developers utilizing the SGUI architecture need not be
intimately familiar with different GUI libraries to develop a
platform-specific GUI presentation for each of the hetero-
geneous device platforms.

An exemplary operation of the SGUI architecture is
during the migration of a scalable application from one
device platform to another device platform. Migration of a
scalable application involves moving an instance of an
operating scalable application from a source device platform
to a target device platform. For example, consider a user
operating a scalable application relating to email on a laptop
PC in an office using a mouse/keyboard. Prior to the
completing work, the user needs to leave the office. At this
time, the user may migrate the still active scalable applica-
tion from the laptop PC (source device platform) to a PDA
(target device platform) and continue to perform email
functions. Since the display screen of the laptop PC is much
larger, the presentation of the application is scaled to the
display screen of the PDA by the SGUI architecture. In
addition, the user interface functionality achieved with the
mouse/keyboard on the laptop PC may be scaled to the user
interface functionality of a touch screen present on the PDA
by the SGUI architecture. The SGUI architecture provides
scalable application transferability of the user interface
independent of the source and target device platforms. As
such, the scalable application need only be designed to run
using the SGUI architecture, not specifically designed to run
on either of the two device platforms.

FIG. 1is a block diagram of one embodiment of a scalable
graphical user interface (SGUI) architecture 10. The SGUI
architecture 10 includes a scalable GUI library module 12,
a customizing module 14, and a render manager module 16
communicatively coupled as illustrated. The blocks identi-
fied in the illustrated embodiment are intended as illustrative
designations to aid in understanding of the invention. These
identifications are not intended to represent discrete struc-
tures. As such, fewer or additional blocks may be utilized in
various embodiments to describe the functionality of the
SGUI architecture 10.

The scalable GUI library module 12 may be a tool used
by application developers during development of a scaleable
application. In addition, the scalable GUI library module 12

20

25

30

35

40

45

50

55

60

65

8

may provide a library of GUI components for use with the
intermediate representation by the SGUI architecture 10. In
one embodiment, the device platform independent APIs may
be utilized during development of scalable applications. The
device platform independent APIs may be implemented by
application developers within device platform independent
application GUIs to build the intermediate representation.
Accordingly, instantiation of an intermediate representation
with device platform independent application GUIs includes
execution of the device platform independent APIs within
the scalable GUI library module 12. The instantiation of the
intermediate representation is depicted as “Device Indepen-
dent Intermed. Rep.” in FIG. 1 to illustrate that the inter-
mediate representation is device platform independent.

In general, operation of the scalable GUI library module
12 is similar to other forms of GUI libraries, such as, for
example, Java abstract window toolkit (AWT). In the pres-
ently preferred embodiments, the scalable GUI library mod-
ule 12 is designed to align with the look and feel commonly
found in Java GUI applications. Accordingly, the effort
required by application programmers familiar with Java
technology to convert existing device platform specific
application GUIs utilizing device platform specific APIs into
device platform independent application GUIs utilizing the
device platform independent APIs within the SGUI archi-
tecture 10 is minimized.

The customizing module 14 operates to customize the
device independent intermediate representation for a target
device platform. The term “target device platform” identifies
one of the heterogeneous device platforms where the scale-
able application is generating a presentation for display.
Generation of a presentation may occur while a scaleable
application is running on a device platform identified as the
target device platform. In addition, a presentation may be
generated when a scaleable application is migrated from a
source to the device platform that is the target of the
migration (the target device platform). The customizing
module 14 of one embodiment includes a task manager
module 18 and a transformation manager module 20 com-
municatively coupled as illustrated.

The task manager module 18 of one embodiment may
operate to remove tasks (functions) from the device inde-
pendent intermediate representation based on the capabili-
ties of a target device platform. The intermediate represen-
tation is depicted as “Pruned Intermed. Rep.” in FIG. 1 to
illustrate the removal of tasks by the task manager module
18. In one embodiment, the scalable application identifies
the capabilities of a target device platform and provides the
capabilities to the task manager module 18. In another
embodiment, the task manager module 18 is capable of
identifying the capabilities of a target device platform.

Tasks removed from the intermediate representation may
include those tasks representative of functions/capabilities
of a scaleable application that are not suitable for a target
device platform. For example, a laptop PC does not typically
utilize tasks related to telephone keypad functionality. Simi-
larly, it may not be desirable to display all tasks on a target
device platform due to constraints of the available capabili-
ties. For example, use of a wireless telephone keypad to
input large amounts of text is troublesome and time con-
suming. As such, the task manager module 18 may remove
many of the tasks related to editing functions that are too
cumbersome for a wireless telephone. In one embodiment,
the task manager removes the tasks according to the capa-
bilities of the target device platform and/or any other prop-
erties specified by application developers within the inter-
mediate representation.

US 7,234,111 B2

9

The transformation manager module 20 operates to trans-
form the intermediate representation into a device platform
dependent presentation. The device platform dependent pre-
sentation may be adapted to the particular user interface
present within the target device platform. Transformation of
the intermediate representation preferably occurs following
removal of unsuitable tasks by the task manager module 18.
Transformation of the intermediate representation involves
dynamically configuring the intermediate representation
based capabilities of the target device platform, the logic
structure of the intermediate representation and/or properties
specified by the application GUI. Following transformation
by the transformation manager module 20, the intermediate
representation is a platform device dependent intermediate
representation depicted in FIG. 1 as “Device Dependent
Intermed. Rep.” to illustrate customization to a particular
one of the heterogeneous device platforms (a target device
platform).

The render manager module 16 may operate to bring
presentations onto the display screen of the target device
platform. The render manager module 16 preferable oper-
ates following customization of the intermediate represen-
tation by the customizing module 14. The render manager
module 16 may extract the presentation from the device
platform dependent intermediate representation. In addition,
the render manager 16 may utilize the scalable GUI library
module 12 to display the presentation on a display screen of
the target device platform.

Operation of the render manager module 16 includes
traversing the device platform dependent intermediate rep-
resentation to extract the presentation. The device platform
dependent intermediate representation is actually an
encoded representation of the application GUI customized to
be device platform dependent for the target device platform.
As such, display of the presentation extracted by the ren-
dering manager module 16 is a display of a device dependent
application GUI on the display screen of a target device
platform.

The presently preferred embodiments of the SGUI archi-
tecture 10 may operate in conjunction with a scaleable
application to provide seamless scaling of application GUIs
to the capabilities of a target device platform. Application
developers may use the scalable GUI library 12 as a tool to
build the device platform independent intermediate repre-
sentation from an application GUIL. As illustrated in FIG. 1,
during runtime of the SGUI architecture 10, an application
GUI may be executed to instantiate the device platform
independent intermediate representation using the scalable
GUI library module 12. The customizing module 14 may
customize the intermediate representation to the device
dependent intermediate representation based on the target
device platform the scaleable application is currently oper-
ating on. The rendering manager module 16 may utilize the
device dependent intermediate representation to extract the
presentation that has been customized to the user interface of
the target device platform. The presentation may then be
displayed on the display screen of the target device platform
by the rendering manager module 16.

A more detailed discussion of the functionality of the
modules illustrated in FIG. 1 will now be presented.

FIG. 2 is a more detailed block diagram of one embodi-
ment of the scalable GUI library module 12. The scalable
GUI library module 12 of one embodiment includes a
scalable GUI component library module 22, an intermediate
representation (IR) module 24 and a scalable GUI event
translator module 26. In other embodiments, fewer or more
modules may represent the functionality of the scalable GUI

20

25

30

35

40

45

50

55

60

65

10

library module 12. The scalable GUI component library
module 22 may be similar in some respects to other well-
known GUI component libraries. One embodiment of the
scalable GUI component library module 22 includes a
plurality of scalable graphic user interface (SGUI) compo-
nents and the device platform independent APIs. As previ-
ously discussed, the device platform independent APIs are
compatible with different heterogeneous device platforms,
and are available for use in construction of device indepen-
dent application GUIs.

The SGUI components are graphical user interface com-
ponents within a library. The term “SGUI components™ is
used herein to illustrate that the graphical user interface
components are device independent graphical user interface
components supported by different heterogeneous device
platforms operable with the SGUI architecture. Further, the
term “SGUI components” is used to illustrate that the
graphical user interface components may be customized for
the different heterogeneous device platforms. SGUI compo-
nents may also be referred to as composite SGUI compo-
nents. As used herein, the term “composite SGUI compo-
nents” refers to multiple SGUI components grouped to
provide related functionality.

The device independent application GUIs may be used to
create an instance of device independent intermediate rep-
resentations that include a representation of the SGUI com-
ponents. Prior to producing a presentation for display, how-
ever, the intermediate representations may be transformed
(or customized) such that device platform dependent pre-
sentations may be displayed.

In the presently preferred embodiments, the scalable GUI
component library 22 is similar in look and feel to Java
SWING. This similarity may allow application developers
familiar with Java SWING to learn the scalable GUI com-
ponent library 22 relatively easily. In one embodiment, the
similarity with Java Swing includes the existence of a prefix
of'each SGUI component. In this embodiment, however, the
prefix is an “S” instead of a “J” as in Java SWING.

In general, there are four well-known techniques for
building cross-platform GUI libraries, namely: Least Com-
mon Denominator (LCD), Superset Emulation, Direct API
Emulation and Layering/Wrapper. The LCD technique can
include features that are common to all GUI libraries. The
Superset Emulation technique can provide a superset of GUI
components for all GUI libraries. The Direct API Emulation
technique can directly map a device-specific API of one GUI
library to a device-specific API of another GUI library. The
Layering/Wrapper technique can provide an abstract GUI
library that maps to each GUI library.

In one embodiment of the SGUI architecture, a combi-
nation of both Direct API Emulation and Wrapper tech-
niques are implemented. In other embodiments, any other
technique or combination of techniques may be used. It
should be noted, however, that use of the LCD technique
may limit the availability of SGUI components. Further, use
of the Superset Emulation technique may limit scalability
when the number of GUI libraries supported by the SGUI
architecture increases.

The combination of Direct API Emulation and Wrapper
techniques may be implemented with the scalable GUI
component library module 22. The scalable GUI component
library module 22 may be mapped to any other GUI library.
In one embodiment, the scalable GUI component library
module 22 is mapped to device specific GUI libraries. The
device specific libraries may include, for example, Java
SWING, Java AWT and/or Java Dola. In other embodi-

US 7,234,111 B2

11

ments, the scalable GUI component library module 22 may
be mapped to additional/different libraries including non-
device specific libraries.

Mapping within the scalable GUI component library
module 22 preferably maps SGUI components to device-
specific GUI components in other libraries. This mapping
may occur where corresponding device-specific GUI com-
ponents are available in the device-specific GUI libraries. If
device-specific GUI components are unavailable, the SGUI
components may be mapped to device-specific composite
GUI components in the device-specific GUI libraries. In one
embodiment, the mapping is not fixed. Accordingly, in this
embodiment, application developers may override the
default mapping by selectively changing/adding mapping of
the SGUI components within the scalable GUI component
library module 22.

Referring again to FIG. 2, the intermediate representation
(IR) module 24 may be any application that includes the
device independent APIs used by the application GUI to
build an intermediate representation. The intermediate rep-
resentation represents the device independent application
GUIs utilizing the scalable GUI component library module
22. In the presently preferred embodiment, the intermediate
representation has a tree-like structure and may be referred
to as an intermediate representation (IR) tree. In other
embodiments, other structures, such as, for example, an
outline structure, a matrix structure or any other relational,
logic based, structure may be used to represent the interme-
diate representation.

The IR tree provides a logic structure in which SGUI
components may be arranged. The SGUI components may
be arranged by encapsulating device platform independent
application GUIs in a simple intermediate representation in
the IR tree. Since the application GUIs are device platform
independent, the IR tree may include every possible SGUI
component supported by the scalable application. The SGUI
components may be arranged to provide for relatively
simple transformation to device platform dependent presen-
tations. In addition, as later described in detail, layout
structures, layout constraints and other properties indicating
constraints may be specified within the logic structure of the
IR tree. Further, the IR tree preferably mimics the hierarchal
container concept of Java technology to perpetuate similar-
ity with Java GUI application developments.

FIG. 3 is a block diagram illustrative example of the
structure of an IR tree 40. The IR tree 40 comprises a
plurality of interconnected nodes configured in a hierarchal
structure. The illustrated hierarchal structure is just one
example of any number of possible configurations. In the
presently preferred embodiments, the IR tree 40 includes at
least one component node 42 and at least one container node
44. In other embodiments, additional categories of nodes
may be identified to represent application GUIs.

The component nodes 42 of one embodiment represent
individual SGUI components. The component nodes 42 may
be considered “leaves” of the IR tree 40 since there are no
additional nodes of lower hierarchal position connected with
the component nodes 42. The container nodes 44 of one
embodiment represent logical panels within the IR tree 40.
The logical panels are representative of different sections or
panels within the pages of a presentation produced from the
IR tree 40 for display on the display screen of a device
platform. For example, within a scalable application related
to email, a container node 44 may represent a window for
displaying all the emails received by a user.

The container nodes 44 may have component nodes 42
and/or other container nodes 44 of lower hierarchal position

20

25

30

35

40

45

50

55

60

65

12

connected with the container nodes 44 as illustrated. The
nodes within lower hierarchical levels of the IR tree 40
represent related sub-logical panels and related SGUI com-
ponents that are part of the section or panel represented by
higher-level related logical panels. For example, in the
window for displaying emails, a lower hierarchal level
container node 44 may provide a descriptive header within
the window and connected component nodes 42 may pro-
vide sorting functions for emails received.

In the exemplary IR tree 40¢ illustrated in FIG. 3, root
container node 44a, is in the highest hierarchal level of the
IR tree 40 and may represent an entire presentation. The
remaining container nodes 44 may be considered hierarchal
children of root container node 44a since they represent
different logical panels within the presentation. Container
nodes 44c, 44d, 44e, 44g and 44/ may represent the lowest
level container nodes of root container node 44a. Con-
versely, container nodes 4456, 44¢ and 44d are immediate
hierarchal children of root container node 44a. As further
illustrated, the hierarchal children of some of the container
nodes 44 are the component nodes 42. For example, the
hierarchical children of container nodes 44c and 44d are
component nodes 42g, 42/ and component nodes 42, 42k,
respectively.

The IR tree 40 may also represent a task structure of a
scalable application. The task structure may be represented
by grouping SGUI components related to each task per-
formed by the scalable application. As used herein, the term
“task™ identifies functions that a user of a device platform
may perform with the scalable application. Functions are
dependent on the device platform as well as the scalable
application. For example, email capability (scalable appli-
cation) on a wireless phone device (device platform) may
include such tasks as viewing, deleting and creating email
messages utilizing a touch screen. Accordingly, groups of
SGUI components for indication and acceptance of user
commands may be grouped for each function.

The task structure preferable groups SGUI components
(component nodes 42) related to a specific task (function)
into a logical panel (container node 44). Grouping within a
container node 44 may result in the display of a task
represented by the corresponding group of SGUI compo-
nents on a device display of the device platform. For
example, as illustrated in FIG. 3, a task 46 may include
container node 44e and hierarchical children component
nodes 42a and 425. Alternatively, a task may include mul-
tiple container nodes 44 and corresponding component
nodes 42.

In one embodiment, the grouping of SGUI components
also allows an application GUI to specify properties to
provide constraints indicating task preferences. The proper-
ties may attach certain task preferences to the corresponding
container nodes 44. Task preferences may, for example,
specify tasks suitable for a particular device platform,
specify alternative presentations of tasks on different device
platforms and/or specify any other information related to a
task and/or the device platform on which the scalable
application is currently operating.

As previously discussed, application developers may con-
struct the IR tree 40 within scaleable applications during
development. In addition to specifying the hierarchical
structure of the container nodes and the component nodes,
application developers may also specify other properties
providing constraints to influence the logic structure and/or
layout parameters of the IR tree 40. The properties may be
specified for the component nodes 42 (SGUI components),
the container nodes 44 (logical panels) and/or the IR tree 40.

