
mProducer: Authoring Multimedia Personal Experiences on Mobile Phones

Chao-Ming Teng, Hao-hua Chu, Chon-In Wu
Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan 106

{jt, hchu, r92079}@csie.ntu.edu.tw

Abstract

This paper presents themProducer tool that enables multime-
dia content authoring on mobile phones. It addresses three major
challenges: limited storage space on mobile phones, costly and
slow wireless links, and limited mobile user attention. Our con-
tribution is twofold: (1) a novel technique called Storage Con-
strained Offloading (SCO) that intelligently uploads selected por-
tions of contents to a remote storage server, so that the amount
of contents a user can capture is not restricted by the size of the
small mobile storage, and (2) two new UI techniques, the Key-
frame based editing and automatically generated content naviga-
tion tree, to reduce the amount of user efforts for editing.

1. Introduction

With the popularity of camera-equipped mobile phones, mobile
users can easily capture and share their personal experiences as
digital multimedia (video and audio) contents anytime, anywhere.
To provide the convenience that a mobile user can capture, edit,
and then share personal experience from the same mobile phone,
we propose a mobile authoring tool, calledmProducer, that al-
lows a mobile user to perform multimedia content editing before
sharing his/her personal experience with family and friends. This
is an improvement over the existing practice of having to trans-
fer the captured contents from a digital camera to a PC, then us-
ing a PC-based authoring tool to edit the content and share it. This
practice is inconvenient because a user has to change devices be-
tween capturing, editing and sharing, and it limits the user to edit
and share only when (s)he has access to a PC.

Developing a mobile authoring tool needs to consider the limi-
tations of a mobile device and the mobile computing environment.
We identify two challenges thatmProducer needs to address:

1. The limited storage on a mobile phone restricts the size of
contents a user can store. For example, the new Toshiba T08
mobile phone [10] provides a video editing tool. Given that
it has only 8MB of mobile storage, it can only record about 3
minutes of video without audio. This small storage on a mo-
bile device is hardly sufficient for a mobile user to record one
complete experience. To address this problem, a mobile au-
thoring tool should incorporate an offloading mechanism to
upload captured contents to a remote storage server such that
the amount of contents a user can capture is not limited by
the mobile storage. One naive offloading approach is to up-
load every piece of content to the storage server immediately

after it is captured, and then download it whenever the au-
thor needs to edit it. There are two potential problems in this
naive approach. The first problem is that uploading the parts
of contents that will later be cut by a user is a waste of net-
work bandwidth. The second problem is that the low wire-
less link bandwidth is likely to result in slow downloading of
contents, causing poor and non-interactive user editing ex-
perience. Therefore, we need a more intelligent offloading
mechanism to determine when and what to offload from a
mobile storage to a storage server.

2. The second challenge is the limited attention a mobile user
gives to mobile applications. Under the mobile computing
environment, real-world people, objects, and activities can
contend for a user’s attention at the same time (s)he is run-
ning the applications [13]. To address this issue, the mobile
authoring tool and its editing UI need to be simple enough so
that it demands less user efforts.

Our contributions are two innovative techniques that solve the
two problems described above. (1) We design a novel offload-
ing technique calledStorage Constrained Offloading (SCO)that
determines when and what contents to offload, while minimizing
wireless network overhead between a mobile phone and a storage
server. (2) We incorporate Key-frame based editing technique and
navigation tree in editing UI in order to reduce user efforts in edit-
ing.

This paper is organized as follows. Section 2 describes the sys-
tem setup for themProducer tool. Section 3 discusses the SCO
algorithm and its variants. Section 4 explains the editing UI of
mProducer. Related work, and conclusion and future work are
discussed in Sections 5 and 6.

2. The System Setup

We assume that a mobile user carries a mobile camera phone
with limited storage space. This phone has Internet connectivity
through a wireless network such as GPRS, 3G, or 802.11. A user
operates this mobile phone to capture personal experience as dig-
ital multimedia data. When the mobile storage runs out of space,
an offloading mechanism uploads contents to a storage server over
the wireless link. The storage sever is assumed to have potentially
infinite storage space. When a user finishes editing a multimedia
clip and is ready to share it, this clip is also offloaded to the stor-
age server. This allows mobile storage to reclaim space that can
be used to accommodate new clips. The sharing, or distribution
of personal experience contents, is provided by the storage server.
In addition, we assume that a mobile phone is equipped with loca-
tion sensing device (e.g., a GPS receiver), so that it is possible to
determine the location where each piece of contents is captured.



There are two phases in personal experience authoring:the
capturing phaseand the editing phase. We assume that a mo-
bile user would exhibit a repeating usage pattern of capturing one
or more clip(s), followed by editing these clip(s), which frees up
space in the mobile storage.

3. The Storage Constrained Offloading (SCO)
Algorithm

An offloading algorithm makes the following two decisions:
(1) when to offload, and (2) what portion of contents to offload.
We design the SCO so that it can make good decisions to min-
imize the network communication (including both the uploading
and downloading) in both phases of authoring. We describe the
SCO algorithm by how it makes these two decisions.

SCO will not offload contents until the current storage space
is full. The benefit is that we can avoid uploading frames that
will later be cut by a user. SCO chooses frames for offloading
based on an observation that there is a difference in quality re-
quirements betweenpersonal experience authoring tooltargeting
average consumers, and so-calledmass media contents author-
ing tool targetingprofessional contents providers. We believe that
there is no need to provide a mobile personal experience author-
ing tool that can produce professional quality contents. In other
words, fine-grained editing (e.g., frame-by-frame) used in a PC-
based authoring tool for professional quality contents is in fact un-
suitable for a mobile authoring tool, because they require both sig-
nificant amount of user efforts and high resolution screens.

We defineEditing Granularity as the level of details that an
authoring tool allows a user to edit. Take MPEG video editing
as an example, the finest granularity is frame-by-frame editing,
where a user can preview and choose any arbitrary frames for cut-
ting, adding text, etc. A coarser granularity is I-frames, where a
user can preview and edit I frames only.

This observation leads to the fact that for average users, a por-
tion of the frames can be offloaded without degrading the editing
experience. For example, in MPEG video editing, if average users
only require I-frame editing granularity, offloading non-I-frames
does not affect user editing process and experience.

The SCO algorithm is based on a mapping between types of
frames and priorities for offloading. In the above example, I-
frames have higher priority than non-I-frames when it comes to
offloading. In our current work, we design the SCO algorithm to
prioritize frames into three levels based on their frame type:

Frame Priority Frame Type
Level 1 (Low) Non I and Key-frames

Level 2 (Medium) I-frames
Level 3 (High) Key-frames

We adopt the technique of Key-frame selection from the field
of video summarization and set the Key-frames as the highest pri-
ority, because Key-frames are still images that best represents the
contents of a video sequence [12]. As a result, Key-frames are
never offloaded in order to guarantee a minimal Key-frame edit-
ing granularity.

The SCO algorithm is also based on a concept calledStorage
Granularity , which is about the types of frames that mobile stor-
age can accommodate during the capturing phase:

Storage Granularity Frames to Store
High All frames

Medium I and Key-frames
Low Key-frames

Initially, a mobile storage is empty, so the SCO algorithm will
store all types of frames in the mobile storage. The mobile stor-
age is said to be athighstorage granularity when it can accommo-

1. Captured 
    Raw Data 
    Input

Buffer 
Sapce

2. MPEG
    Encoding

3. Shot
    Boundary
    Detection

4. Key Frame
    Selection

5. Storage
    Constrained
    Offloading

6. Mobile Storage

6. Storage Server

Mobile Phone

Figure 1. The Capturing Phase Processing of an
MD using mProducer

date all types of frames. As a mobile user captures new frames,
mobile storage will eventually run out of free space at the cur-
rent storage granularity. When a newly captured frame causes an
overrun in mobile storage, the SCO algorithm will need to drop
down a level to themediumstorage granularity. From this point
of time forward, it will store only new I/Key-frames, and offload
all new non I/Key-frames to storage server. At the same time, it
will also gradually offload existing non I/Key-frames to the re-
mote storage, because they have lower priority level than what is
allowed by the medium storage granularity. By offloading exist-
ing frames, it will create free spaces in the mobile storage for new
I/Key-frames. Note that editing granularity cannot exceed the stor-
age granularity. For example, to support I frame editing granular-
ity requires I frame or above storage granularity.

3.1. Execution Flow Chart

Figure 1 shows the execution flow chart ofmProducer, start-
ing with data captured from a mobile camera phone, and finishing
with storing the data either on a mobile storage or remote server
storage. In the 1st step, camera and microphone on a mobile phone
capture video and audio data, and the multimedia data is stored in
a temporary buffer on a mobile phone. In the 2nd step, a MPEG
encoder [2] reads these uncompressed frames from the buffer and
outputs compressed frames. In the 3rd step, we apply Shot Bound-
ary Detection (SBD) algorithm [4] on the multimedia frames to de-
tect shots1. In the 4th step, we apply Key-frame Selection (KFS)
algorithm [5] to identify representative Key-frame(s) in each shot.
There are several well-known SBD and KFS algorithms in the lit-
erature. Since frames are compressed by MPEG encoder, we adopt
the compressed domain techniques [3]. Note thatmProducer is
not about creating better SBD or KFS algorithms. It simply uses
them to prioritize frames for offloading.

At the end of 4th step, we can attach the following information
to each video frame: (1) whether it is a Key-frame or not, (2) its
MPEG frame type (I, P, or B), and (3) its byte size. The SCO algo-
rithm uses the information for offloading, which is in the 5th step
described below in Section 3.2.

3.2. The SCO Algorithm

The SCO algorithm preserves two properties when offloading
frames to remote storage. They are (1)fairness to all clips, and
(2) gradually offloading of frames. If a mobile storage contains

1 A shot is defined as continuous frames from a single camera at a time.
One easy detection method is to calculate the motion vector ratios for
every B/P frame and use thresholds to detect the boundary [3].



G GGGGG
1 1 1 1

1 2 3  j

2 2

1 2 I

Clip #1 Clip #2

I

. . .

Storage limit

M

B PBBBBB P P

B

Figure 2. The storage view for illustrating SCO -
Case I

multiple clips, the SCO algorithm should try to maintain fairness,
meaning equal storage granularity, among all the clips currently in
the mobile storage. This fairness property can ensure thatmPro-
ducer tool can provide equal, consistent editing granularity for
different clips in the mobile storage. When the SCO algorithm
drops down one level of storage granularity (e.g., from high level
to medium level), the offloading of frames should be done gradu-
ally and on an as needed basis, i.e., it does not offload all the non
I/Key frames at once to remote storage. The reason for gradual of-
floading is to avoid unnecessary uploading of frames that will later
be cut by users.

The example in Figure 2 illustrates how the SCO algorithm
works. The mobile storage currently contains the entire clip #1
and clip #2 that is still under capturing, and it is completely full.
The blockGi

j is thej-th group-of-pictures (GOP) of clip #i. As-
sume a new frame comes into the mobile storage, the SCO algo-
rithm will offload all the frames except the I-frame and Key-frame
(if any) of the GOP that is marked by the marker (Clip #1 in this
case) to the storage server. This offloading frees up a block of
space for new frames. This marker will then move to the next
clip’s (clip #2) foremost un-cleared GOP, where SCO will offload
the non-I/Key-frames in this GOP in the next round. In order to
achieve fairness among clips, the SCO algorithm offloads group
of frames marked by the marker that moves in a round-robin fash-
ion among all clips currently in mobile storage.

Suppose that all non-I/Key-frames are offloaded to a storage
server. The SCO algorithm will offload I frames next. Figure 3
illustrates the state of a mobile storage at the ”Medium Storage
Granularity”, where all the non-I/Key-frames are offloaded to a
storage server to make space for I/Key-frames.I1

1 to I1

j andK1

1

to K1

p are I-frames and Key-frames of clip #1 respectively. Con-
sider that a new frame is generated. If it is not an I or a Key-frame,
it will be uploaded right away. If it is an I or Key-frame, the SCO
algorithm drop to the ”Low Storage Granularity”, and it will start
to offload I-frames to a storage server. Figure 3 shows an advanc-
ing marker that points to the next frame that will be offloaded next.

We design an ”Offloading List” that computes the order of
frames to be offloaded in the mobile storage. It sorts frames based
on the frame priority first and then applying round-robin algorithm
over clips. With this list,mProducer can simply look up the head
of the list to get the frames for uploading. For example, in Fig-
ure 2, the 9 B and P frames ofG1

1 will be placed at the positions
1 to 9 on the Offloading List, and B and P frames ofG2

1 will be
placed at positions 10 to 18 on the list, and so forth.

The main body of SCO algorithm is shown in Algorithm 1. We
denote the free space in the storage asZ, thei-th frame of clip #j
asf i

j , its size asSfi
j
, the newly coming frame asfN

new, andN is

the number of clips in the mobile storage.

Clip #1 Clip #2

Storage limit

M
B

I II III IIIIII
1

1
111111

1 2 3 4 5 6
1

K 1 j
2

3
2222

2 4 5
. . .

Figure 3. The storage view to illustrate SCO - Case
II

Data: A new coming framefN
new (size, type)

Result: Frames to offload to storage server or savefN
new

initialization;
if SfN

new
> Z then

offload the frames in the order of the ”Offloading List”
until Z > 0;
adjust the ”Offloading List” accordingly ;

end
if fN

new is not offloadedthen
savefN

new and adjust the ”Offloading List” ;

end

Algorithm 1 : The basic SCO algorithm

In the current work,mProducer does not allow storage gran-
ularity to fall below the Key-frames level (i.e., the mobile stor-
age must store all Key-frames). Therefore, there exists a limita-
tion on the size of multimedia contents that a user can capture at
any given time. The reason for this size limitation is thatmPro-
ducer does not want to upload Key-frames to the storage server
and then download them again during the editing phase. When
this limit is reached,mProducer will inform its user to stop cap-
turing new data and start to edit clips.

3.3. Variants of The SCO Mechanism

There are many possible variants to the SCO algorithm. We
can use different priority metrics for incoming frames, which af-
fect the ordering of frames in the offloading list. The priority met-
ric can be based on the time of capturing (e.g., the later the higher
priority), the size or fidelity of each piece of contents (e.g., the
higher fidelity the higher priority), or the hierarchy of contents es-
tablished by video indexing [7].

4. The Authoring User Interface

mProducer provides two UI techniques: (1) navigation tree,
which is automatically generated using the context information at-
tached to each clip (on the left of Figure 4) and (2) Key-frame
based editing. Each of these two techniques is applied to simplify
and reduce the amount of user efforts in each of two steps in the
user editing process. The first editing step is searching for a clip
to edit. As a user captures more contents, the number of clips in-
creases, so it becomes more time consuming to scan through the
long list to find the wanted clip on a small display. The naviga-
tion tree can help to speed up the search by organizing the clips
into a content hierarchy based on their context information (GPS
location or time). For example, if a user knows the location of a



Figure 4. The integrated UI in mProducer

wanted clip, e.g., Taipei, he/she can quickly find it by scanning
through only the clips under the Taipei content hierarchy.

The second editing step is previewing and editing a selected
clip. Recall the observation in Section 3 that says average users do
not need to create high quality contents using fine-grained, frame-
by-frame editing granularity. Instead, average users are likely to
prefer coarse-grained, key-frame editing with reduced user effort.
As a result,mProducer sets the default editing granularity to Key-
frames. It supports key-frame editing by presenting a slide show
of key frames to a user. In general, the time duration of a slide is
set to be smaller than the time duration of a shot, so playing a slide
show is faster than playing a clip frame by frame. It also allows
a user to quickly browse through different shots and clips. How-
ever, a user can select only key frames for editing, such as trim-
ming, merging, embedding text or audio.

5. Related Work

Toshiba T-08 cell phone [10] is a commercial product that
comes with a video editing tool. Since it does not provide any
offloading algorithms, it allows users only to record around three
minutes of video clips at 5 fps on its mobile storage. This is in con-
trast tomProducer, that allows users to capture almost unlimited
contents.

Jokela [1] presents an overview of the key opportunities and
challenges in developing tools for authoring multimedia contents
for the mobile environment. However, it did not describe any solu-
tions. Lara,et. al. in [8] describes a collaborative mobile author-
ing tool that allows different authors to download and edit different
fidelity contents. They address the replica inconsistency problem
when merging revisions at different fidelities on servers. However,
they do not address the limited storage issue and up/downloading
traffic overhead.

Hitchcock [6] is a desktop tool that uses Key-frames to speed
up editing home video films. It displays full screen of Key-frames
for selection, and a user can specify the length of playtime of each
shot that each Key-frame represents. SincemProducer runs on
a mobile phone with a smaller display, it cannot show too many
Key-frames on the same screen. Instead, it uses slide shows to go
through the Key-frames.

6. Conclusion and Future Work

In this paper, we present themProducer tool for personal ex-
periences authoring on mobile phones. We believe thatmPro-
ducer is the first of its kind to address the problem of lim-
ited mobile storage and network overhead. Our contribution is
twofold: (1) a novel technique called Storage Constrained Offload-
ing (SCO) that intelligently uploads selected portions of contents
to a storage server, so that the amount of contents a user can cap-
ture is not restricted by the size of the small mobile storage, and
(2) two new UI techniques, the Key-frame based editing and auto-
matically generated contents navigation tree, to reduce the amount
of user efforts for editing.

For future work, we plan to design innovative ways of sharing
these personal experiences. Current ways of sharing contents have
some limitations. For example, the MMS [14] defined for cellu-
lar networks can only achieve “active sharing”, which means that
the contents are shared to audience in a limited scope (e.g., within
one’s contact list) only. Our future work will explore more inter-
active ways of sharing.

7. Acknowledgement

The authors would like to thank Dr. Shao-Yi Chien for the
valuable discussion and support by NSC, Taiwan under grant 92-
2218-E-002-0362.

References

[1] Tero Jokela, ”Authoring Tools for Mobile Multimedia Con-
tent,” Proc. of IEEE ICME, 2003.

[2] MPEG Industry Forum, http://www.m4if.org
[3] J. Meng and S.-F. Chang ”CVEPS - A Compressed Video

Editing and Parsing System,”Proc. of ACM Multimedia, 1996
[4] P. Browne,et. al., ”Evaluating and Combining Digital Video

Shot Boundary Detection Algorithms,”Proc. of Irish Machine
Vision and Image Processing Conference, 2000

[5] H. Zhang,et. al., ”Video Parsing, Retrieval and Browsing: An
Integrated and Content-based Solution,”Proc. of ACM Multi-
media, 1995

[6] A. Girgensohn,et. al., ”A Semi-automatic Approach to Home
Video Editing,” Proc. of Symposium on User Interface Soft-
ware and Technology (UIST), 2000

[7] C. Snoek and M. Worring, ”Multimodal Video Indexing: A
Review of the State-of-the-art,”Multimedia Tools and Appli-
cations, 2004 (in press)

[8] E. de Lara,et. al., ”Collaboration and Multimedia Author-
ing on Mobile Devices,”Proc. of International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2003

[9] X. Gu, et. al., ”Adaptive Offloading Inference for Delivering
Applications in Pervasive Computing Environments,”Proc.
of IEEE Pervasive Computing and Communication (PerCom),
2003

[10] Vodaphone, Japan http://www.vodafone.jp/english/
[11] Synchronized Multimedia, W3C Interaction Domain,

http://www.w3.org/AudioVideo/
[12] J. Casares,et. al., ”Simplifying Video Editing Using Meta-

data,” Proc. of Designing Interactive Systems (DIS), 2002
[13] P. Tarasewich, ”Designing Mobile Commerce Applications,”

Communications of The ACM, Dec. 2003
[14] 3GPP TS 23.140, ”Multimedia Messaging Service - Func-

tional Description,”TSG Terminals, stage 2, release 4, version
4.4.0, 2001-9

2 Any opinion, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of NSC.


