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Abstract

Recent localization research has focused on improving
the accuracy of pinpointing the physical location of a target.
We think that theenergy efficiencyand thequality of the lo-
calization services (QoLS)are equally important properties
of localization systems. We refer to the QoLS as the timely
supply of the location information to the applications. En-
ergy efficiency and quality are seemingly two contradictive
goals in terms of determining the rate of triggering the lo-
calization systems to perform the necessary computation
and communication. In that, a lower location sampling rate
contributes to a lower level of energy consumption but in the
meantime compromises the timeliness of acquiring the lo-
cation information. Opting for energy efficient and quality
localization services, we propose amobility-aware mech-
anism that adapts the sampling rate to the target mobility.
Results from our simulations confirm that the adaptive sam-
pling approach is promising and effective.

1. Introduction

Location-aware applications[1] are coming of age and
to be realized in many everyday scenarios, for instance, as-
set tracking in warehouses, patient monitoring in medical
facilities, and household management at home. These appli-
cations provide different types or levels of services basedon
the location information, supplied bylocalization systems.
Much recent localization research [2][3] [4] concentrateson
improving the accuracy of pinpointing the physical location
of the target. We think, however, that theenergy efficiency
and thequality of localization service (QoLS)are two issues
equally important to address.

Energy efficiency of themobile units (e.g., tags or
badges)attached to the tracked target is essential for any
practical deployment. That is, a highly accurate location

system is still of little use if it requires frequent recharging
of the mobile units. In the context of localization system,
the energy consumption of a mobile unit is proportional to
the sampling rateof the location information – the rate at
which the localization infrastructure and its counterpartmo-
bile units are triggered to perform the necessary communi-
cation and computation.

The sampling rate of the location information may also
impact the quality of localization service. Consider two
consecutive samples. There is a short period of time that
the application does not have the most up-to-date location
of the target. Hence, even when the location information
provided by the localization system is perfect, the applica-
tion might not be able to detect whether the target enters
a critical region such that the application can activate the
corresponding services in real time. Many location-aware
applications, for example, enemy tanks crossing the border
line, expensive jewelries exiting the shop, young children
entering the balcony, or sales leaving the office without the
mobile phones, do require timely detection of the target en-
tering certain critical areas or boundaries. We refer to the
timely supply of the location informationas the quality of
the localization service.

The dilemma withfixed-rate samplingis that the sam-
pling rate can be set high to provide real-time location in-
formation, but when the target is far from the critical re-
gion where the timely service requirement is not as high,
the high sampling rate will be unnecessary and there is no
need for such waste of energy. Aiming at improving the
energy efficiency and quality of the localization service at
the same time, we propose anadaptive location informa-
tion sampling mechanismbased on the location andpre-
dicted mobilityof the target. Given the critical region to
watch closely from the application, the mechanism controls
the rate the localization system is triggered to acquire lo-
cation information. When the target moves fast or close
to the critical region, the sampling rate increases to enable
timely detection of target entering the critical region at the



application level. When the target slows down or moves
away from the critical region, the sampling rate decreases
to conserve energy. Thismobility-aware adaptive sampling
mechanismcan be coupled tightly with any localization sys-
tems and the integrated mobility-aware localization systems
can work transparently for location-aware applications with
quality of location service requirement.

The idea of using predicted mobility for overhead opti-
mization has appeared in the literature of mobile network-
ing computing. For object tracking sensor networks, pre-
dicted object mobility is used to activate sensor nodes that
are falling into the mobile object’s proximity while the other
nodes hibernate to conserve energy [5]. Limiting the region
of communication or sensing, as proposed in the literature,
reduces the system overhead in the spatial dimension. The
mobility-aware adaptive sampling mechanism, complemen-
tary to the prior work, exploits the temporal dimension.

Our contribution is two-fold. First of all, we propose
a mobility-aware adaptive sampling enhancement to gen-
eral localization systems. Secondly, with simulations, we
validate that the mechanism is able to provide both energy-
efficient and quality localization services to location-aware
applications.

2. Mobility-Aware Sampling Mechanism

The idea of mobility-aware adaptive sampling is appli-
cable for general localization systems. To focus more on
evaluating the adaptive sampling mechanism, we consider a
simplified mechanism for 1-dimensional space. In this sec-
tion, we will first describe the mechanism for general local-
ization systems, and then detail the simplified mechanism
for the proof-of-concept evaluation.

2.1. General Mechanism

The objective of the mobility-aware adaptive sampling
mechanism is to sample right on the time the target comes to
the critical point as illustrated in Figure 1(a).P1andP2are
the two most recent sample points. The velocity is estimated
by dividing the vectorP1 to P2 to the time between the two
points. The critical pointC is where the line of movement
intersects with the critical region. As the target arrives at
positionP2, the system sets the time for the next sample by
calculating the time for the target to move from the current
positionP2 to the critical pointC in velocityV.

To avoid drastic error due to very rough estimation of ve-
locity, we further bound the maximum value of the sampling
interval. This upper bound ensures that the system captures
the movement change within a certain time interval. On
the other hand, since an excessively short sampling interval
may result in extensive use of energy, we also set the lower

bound to avoid such ineffective use of energy. Both the up-
per and lower bounds can be system parameters specified
by the applications for different quality or energy efficiency
requirements.

2.2. Simplified Mechanism

In the simplified mechanism, the problem is reduced to
a 1-dimensional space. Illustrated in Figure 1(b), regions
more thanR distance away from the reference point are
set as the critical region. The critical points thus fall on
a circle centered at the reference point. In a 1-dimensional
space, only the distance instead of the coordinate is avail-
able. We assume a beacon node is placed at the reference
point. Using any ranging technology, we can obtain the dis-
tance between the target and the beacon node. The goal of
this mechanism is to reduce the amount of radio message
exchange performing distance estimation.

To keep track of the target position, the beacon repeat-
edly sends probing messages to trigger the target to send
back a reply message. During the message exchange, both
nodes will be able to know the relative distance by perform-
ing ranging. The target could use the two most recently
sampled distances to estimate the outgoing relative velocity
vectorV with Equation (1).

V = (d2 − d1)/(t2 − t1) (1)

After knowing the relative velocity, the time interval to
send the next probing messageT can be properly tuned by
Equation (2), which is the expected time elapsed for the tar-
get to move across the critical points.

T = |(R − d2)|/|V | (2)

We take absolute value onR − d2 to ensure that the fre-
quency is set high when the distance is close to the critical
region. Also, no matter whether the target is approaching
to or moving away from the reference point in this circu-
lar area, the probing frequency goes high when the relative
velocity increases. Similar to the general mechanism, the
sampling interval is limited by a lower bound and an upper
bound.

The derived sampling intervalT is then sent back to the
beacon node along with the reply message. The beacon
node can then schedule the next probing message after time
T . SinceT is known on both sides, the radio interfaces can
be completely turned off for better energy efficiency.

3. Simulation

The objective of the simulation is to demonstrate quan-
titatively the benefit of mobility-aware adaptive sampling
mechanism, in particular, how much the energy efficiency
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Figure 1. Illustration of Mobility-Aware Sampling

and the timeliness of the critical point localization can be
improved by adapting to the predicted velocity. We imple-
ment both the fixed-rate and mobility-aware adaptive sam-
pling mechanisms.

3.1. Methodology

The mobility-aware adaptive sampling mechanism is im-
plemented in the network simulator version 2, i.e.,ns-2[6].
The reference and target node are simulated by a simple 2-
wireless-node scenario. The radio range is set to 20 meters
while the area of experiment is set to 15x15 square meters
to ensure that the two nodes will be reachable to each other
throughout the simulations. The range of the reference point
to the critical pointR is set to 5 meters.

To simulate the movement of the user, we adopt the ran-
dom waypoint mobility model [7], which matches the ev-
eryday behavior of human migration. In our simulations,
the speed of each movement is chosen uniformly random
from 0.3 to 2 meters per second, which is also around the
speed range of human walking. We vary the pause time in-
terval from 0 to 100 seconds. With different pause time, ran-
dom moving speeds and destinations are generated to run an
8-hour simulation to cover the 9 to 5 working hours.

3.2. Performance Metrics

The performance metrics are detection accuracy and en-
ergy consumption. The application would prefer a timely
report when the target just arrives at the critical region. In
our simulations, the location of the target is reported when
the target isR unit distance away from the reference point.
Thus, the detection accuracy is defined as the distance be-
tween the reported position and the critical distanceR.

For simplicity, we assume that given a localization sys-
tem, the energy consumption per localization is constant
and consider the minimum localization system. In that, a

node equipped with an ultrasound and/or RF transceivers is
placed at the reference point. The target equipped with the
corresponding transceivers receives the ultrasonic and/or
RF signals to estimate its range to the reference point from
which the target velocity can be estimated and the next sam-
pling time can be derived, using the mechanism defined in
the previous section.

Consider the localization systems. Since the ultrasound
and RF interfaces are the primary energy consumer, we
track the energy consumption by measuring the amount of
time that the ultrasound and RF interfaces stay on. The to-
tal power consumption can be obtained by multiplying the
time intervals with the energy the interface requires to stay
on. We use the power consumption profile of the TR1000
radio [8] (Table 1) to approximate the power usage of the
RF and ultrasound interfaces in the minimum localization
system. Note that when the ultrasound or RF interface stays
in the idle listen mode, the power consumption is close to
the transmit and receive mode.

Modes Power consumption
Transmit 14.88 mW
Receive 12.5 mW
Idle 12.36 mW
Sleep 0.016 mW

Table 1. TR1000 Radio Power Consumption

3.3. Results Without Localization Error

The simulation results with zero localization error is
shown in Figure 2. In the figure, the x-axis is the radio en-
ergy consumption and the y-axis is the detection accuracy.
Because no error comes from the localization system, the
error observed here is entirely due to untimely sampling.

The fixed-rate sampling results are drawn by simulations
that each uses a different sampling interval. The 6 data



points in the plot are results of sampling interval being 0.1,
0.5, 1.0, 1.5, 2.0, and 2.5 seconds respectively. The curve
shows that there exists a trade-off between the error and en-
ergy efficiency. The higher the accuracy requirement from
the application, the more energy the system will consume.

The fixed-rate result also acts as a performance bound.
Any effective mechanisms must produce error-energy
curves that are to the lower left of the fixed-rate curve.
These curves suggest that these effective mechanisms can
achieve better accuracy given the same energy use in the
fixed-rate sampling, and better energy efficiency for the
same accuracy.

The other two lines show the results of tuning the upper
and lower bound of the mobility-aware sampling mecha-
nism described in the mechanism section. We first fix the
lower bound to 0.1 seconds and the upper bound to 0.1 sec-
onds. Then, we gradually relax the upper bound from 0.1 to
4.5 seconds (0.1, 0.5, 1.0, 1.5, 2.5, 3.5, 4.5). This gives the
upper bound line. We then fix the lower bound to 2.5 and the
upper bound to 2.5 seconds. To obtain the effect of relax-
ing the lower bound, we decrease the lower bound from 2.5
to 0.05 seconds (2.5, 2.0, 1.5, 1.0, 0.5, 0.1, 0.05). We ob-
serve from the upper bound results, the energy consumption
drops rapidly at the beginning while the average error does
not vary a lot. This shows that the mobility-aware mech-
anism effectively adjusts the sampling interval to a slower
rate to conserve energy and yet maintains a similar level of
accuracy. After the initial drop, further relaxing the upper
bound does not help too much in reducing the energy con-
sumption while the error increases significantly. This means
that when the sampling interval upper bound is too large,
the system becomes less sensitive on accurately predicting
the target movement. In the lower bound set of results, the
average error decreases as the lower bound decreases. The
error stays around 40 cm even if the lower bound is relaxed
further down to 0.05 seconds. We think the reason that the
error cannot be further decreased is due to the accuracy of
the velocity prediction, i.e., the choice of upper bound. With
an upper bound of 2.5 seconds, the system’s responsiveness
is bounded.

By the above thorough exploration of the parameter
space, we have found that the performance of the mobility-
aware sampling mechanism, falls in the lower left area
of the fixed-rate sampling results. This indicates that the
mobility-aware mechanism can improve both the accuracy
and energy efficiency of the localization service.

4. Conclusion

In this work, we propose and validate a mobility-aware
adaptive sampling mechanism that meets the accuracy re-
quirements of applications and, in the meantime, signifi-
cantly reduces energy consumption for the underlying lo-
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Figure 2. Results Without Localization Error

calization systems.
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