

ROAM (Resource-Aware Application Migration) System

Hao-hua Chu, Shoji Kurakake
haochu@dcl.docomo-usa.com, kurakake@dcl.docomo-usa.com

DoCoMo Communications Laboratories USA, Inc.
181 Metro Drive, Suite 710, San Jose, CA 95110

Abstract
In this paper, we present the design and
implementation of the Roam (Resource-aware
Application Migration) system. The Roam system is a
framework for building mobile applications that are
capable of runtime migration between heterogeneous
computing and communication devices (e.g., PCs,
PDAs, cell phones, and etc). In particular, the Roam
system is focused on device heterogeneity in today’s
mobile device market. The Roam system proposes
several innovative solutions that enable migrating
applications to become aware of the target device
capabilities, and then dynamically reconfigure their
code and computation to fit the target device
capabilities. We have implemented the Roam system
on top of Java VM and PersonalJava VM. We have
also conducted some experiments using simple
applications running on top of the Roam system, and
the experimental results have shown promising
feasibility of the Roam system.

Keywords: Mobile Applications, Application
Migration, Mobile Agents, Java.

1 Introduction
Roam (Resource-aware Application Migration)
system is a framework for building resource-aware
mobile applications that are capable of runtime
migration between heterogeneous computing and
communication devices that have vastly different
hardware, software and network capabilities. Some
examples of heterogeneous devices are desktop
computers, notebooks, personal digital assistants
(PDAs), cell phones, or other emerging mobile
devices and information appliances.

1.1 Motivations
Given the popularity and widespread use of mobile
devices nowadays, there will be no surprise in the near
future that a single user may own multiple such
mobile devices or information appliances with
different sizes, shapes, functionalities, and
capabilities. However, a mobile user may use only
one particular device at a particular time depending on
his/her situation. For example, a user is planning an
online trip (via an Applet) on a desktop computer in
office. In the middle of the planning, the user receives
an urgent call and must leave office for a meeting at a
remote site. As a result, the user takes a light-
weighted device (PDA or cell phone) to the remote

site, and he/she really wants to continue working on
trip planning on the light-weighted device when
he/she is on a bus or during break time of meeting.
Based on this scenario, we think that there exists a
need to allow a mobile user, when switching devices,
to also move any running applications from one device
to any other connected device in an effortless manner.
The benefit is that the applications can continue to
serve the user anywhere anytime on whatever device
is accessible and convenient to the user. The Roam
system is designed to realize this need for runtime
application migration among heterogeneous devices.

There are several alternative approaches to application
migration. Remote display (e.g., X window) is one
approach. Remote display allows windows and
graphics to be transmitted and displayed on the remote
user terminals, while computation occurs on the server
host (e.g., X server). However, remote display is only
suitable to situations where terminals and server hosts
are connected by relatively fast networks (e.g., LAN),
and they must always stay connected. As a result,
remote display is not suitable to the mobile
environment.

Data synchronization is another approach, and it is a
commonly used approach nowadays. Data
synchronization is typically used to synchronize data
between two device-specific applications—different
applications that perform the same function on
different types of devices. When a user switches from
one device to another device, he/she invokes data
synchronization software to synchronize data between
two different applications running on two devices. In
comparison to the application migration used in the
Roam system, we believe that it has the following two
advantages over the data synchronization approach:
• Application developers can develop on

application that can run on different devices.
This is an improvement over device-specific
applications. For examples, we have different
email programs on PCs, PDAs, and cell phones,
which they all perform the same function – email.
However, application developers have to develop
different applications that perform the same
function on different types of devices. This is a
waste of developers’ development time. Using
the Roam system, application developers can
develop one application that can run on different
types of devices.

• Mobile users can dispatch running applications
effortlessly from one device to any other devices
that they plan to carry with them, given that

devices are connected at time of dispatch. This is
an improvement over the existing data
synchronization approach across devices. Not all
running state of an application can be stored as
synchronizable data, and not all data is
interchangeable between different applications
due to lack of a unified data format and data
transformation utilities. When switching devices,
a mobile user may need to input non-
synchronizable data again on the new device.
With the Roam system, application developers
can design their applications so that both the
running state and data are migrated at runtime
from one type of device to another type of device.

There has been an abundance of research in the area of
mobile agents that allow applications to move from
one host to another host at runtime with little or no
loss of running state [1] [2] [3] [4] [5] [6] [7] [8].
These systems are mostly built on top of the Java
virtual machines (JVM), which they can take
advantage of a common virtual machine environment
provided by Java. However, these systems make an
important assumption of device homogeneity. For an
example, the underlying hosts/devices must be PC or
PC-like devices with enough hardware/software
(HW/SW) capabilities to run the standard JVM.
However, device homogeneity is not a realistic
assumption in today’s mobile computing environment
where there exists a wide range of mobile devices and
information appliances with different
hardware/software (HW/SW) capabilities.

1.2 Requirements
The focus of the Roam system is to address the device
heterogeneity problem in runtime application
migration. In order to solve this problem, it requires
device adaptation. The Roam system must enable
mobile applications to become aware of HW/SW
capabilities of the devices they are migrating to. It
must also work with the mobile applications to
adaptively re-configure their code and computation so
that they fit agreeably with the HW/SW capabilities of
the target device. In the Roam system, device
adaptation utilizes the following three techniques. (1)
Resource capability specification allows devices to
describe their HW/SW capabilities, and it allows
mobile applications to describe the required device
capabilities. (2) Computation apportioning allows
mobile applications running on less capable devices to
offload computational or memory intensive tasks to
more capable servers. (3) Dynamic instantiation
allows software components in mobile applications to
be instantiated and loaded dynamically based on
capability of the underlying device.

2 Design
In this section, we describe the design of the Roam
system. It is centered around two design concepts--
Roam System Architecture and the Roamlet
Component-based Programming Model. We call an

application that runs in the Roam system a Roamlet,
and a Roamlet can migrate between any two
connected devices that have the Roam system running.
Based on these two design concepts, we describe three
features that are built into the Roam system to support
device adaptation.

2.1 Roam System Architecture
The Roam system architecture is shown in Figure 1. It
contains the following components: Roam agent,
Roamlet, and HTTP server . Roam agents are the core
components, and they must be installed and executed
on both the source and target devices before a Roamlet
can run and before any Roamlet migration can occur.
During a Roamlet runtime migration, the Roam agent
on the source device first negotiates with the Roam
agent on the target device. The negotiation involves
exchanges of the target device capabilities, the
codebase URL where the Roamlet class byte code can
be downloaded from, and information on how to adapt
the migrating Roamlet to the target device (explained
in later sections). In the 2nd step, the Roam agent on
the target device downloads the Roamlet class byte
code from the HTTP server corresponding to
Roamlet’s codebase. The HTTP server can reside on
the source device or any other devices in the network.
In the 3rd step, the Roamlet on the source device
serializes its running state and sends its running state
to the Roam agent on the target device. In the 4th step,
the Roam agent instantiates the Roamlet on the target
device.

Figure 1: Roam System Architecture

2.2 Roamlet Component-based
Programming Model

The Roam system supports a feature called
computation apportioning, which allows a Roamlet to
offload some of its computational intensive
components to remote servers. However, this requires
the application developers to modulize a Roamlet into
distributed software components that can be
distributed across multiple devices. Figure 2 shows an
example of a Roamlet using this component-based
programming model. The Roamlet is broken down

HTTP Server

Roamlet Classes

PDA (Target Device)

RoamAgen
t

PC (Source Device)

Roamlet

RoamAgent

Roamlet

(2) Code Downloading

(1) Negotiation

(3) Sending
Serialized State

(4) Instantiation

into 3 components—PDA GUI component, PC GUI
component, and computation component. In a
Roamlet, each component may be a distributed object
and may be placed on any suitable devices. This
requires that each component be location transparent,
meaning that it can communicate with any other
components regardless of their physical location.

Figure 2: Roamlet Component-based Programming
Model

2.3 Roam System Features
The Roam system provides three features to support
device adaptation – resource specification,
computation apportioning, and dynamic instantiation.
We describe them in details in the following sections.

2.3.1 Resource Specification
The resource specification is used by Roamlet to
describe what are the required device capabilities to
run each of its components, and by the Roam agent to
describe the device capabilities of its host device.
Figure 3 shows an example on how the resource
specification is used in the Roam system. Because
components in a Roamlet may have different device
requirements, a Roamlet is required to provide a
separate device capability requirement for each
component. The computation component requires a
PC-equivalent device to run it, the PC GUI component
also requires a PC-equivalent device, and a PDA GUI
component requires a PDA-equivalent device or
better.

Since the Roam system is built on top of Java, we
choose Java VM configurations and profiles as the
resource specification parameter in the current
implementation. A summary of Java configurations
and profiles is shown in Table 1. Java configurations
and profiles are used to define the VM capabilities for
different types of devices. Given that a device must
have sufficient HW/SW capabilities to run a particular
VM configuration and profile, VM configurations and
profiles are good indications for the underlying device
capabilities.

2.3.2 Dynamic Instantiation
Dynamic instantiation allows a Roamlet to choose and
to instantiate appropriate components depending on
the target device capability that the Roamlet is
migrating to. Using dynamic instantiation, Roamlet
developers can program different Roamlet behaviors
in separate code segments. At runtime, the Roam
system loads only the code segment that exhibits a
behavior suited for the target device capability.

Figure 3: Resource Specification

In order to achieve dynamic instantiation, we require
application developers to distinguish between two
types of components in a Roamlet—device dependent
(DD) components, and device independent (DI)
components. Examples of DD-components are, but
not limited to, GUI components, which may require
different GUI libraries to take advantage of different
device input and display capabilities. Application
developers would provide one implementation, or one
DD component, for each device type. On the other
hand, DI-components are functional components,
which they exhibit the same behavior regardless of the
types of devices on which a Roamlet is executing.
The Roam system performs dynamic instantiation only
on the DD-components, which the Roam agent would
select the most suitable DD-component for
instantiation during a Roamlet migration.

Table 1: Java VM Configurations and Profiles

Profiles Personal Profile
[2.5MB ROM +
1M RAM]

RMI Profile
[2.5MB ROM +
1M RAM]

Foundation Profile
[1MB ROM + 512K
RAM]

PDA Profile
[512KB]

MID Profile
[136KB ROM +
32KB RAM]

Configurations CDC [512KB ROM + 256K RAM] CLDC [160 KB]
Virtual
Machines

PJVM CVM KVM

Roamle
t

Computation
Component

PC GUI
Component

PDA GUI
Component

PDA (Target Device)

Roam
Agent

Device
Capabilities

PC (Source
Device)

Roamle
t

Roam
Agent

Device Capabilities

Resource
Specification

Resource
Specification

Resource
Specification

PC Device Capability Computation
Component

PC Device Capability PC GUI Component

PDA Device
Capabilities

PDA GUI Component

PDA (Target
Device)

Roam
Agent

Device
Capabilities

Computation
Component Roamle

t

Roam
Agent

Device
Capabilities

(3) Find a Server

PC (Source Device)

Roam
Agent

Device Capabilities

Roamle
t

Computation Component

(4) Computation
Apportioning

(1) Resource
Specification

(2) Comparison:
Not Capable

Server

Figure 4: Dynamic Instantiation

Figure 5: Computation Apportioning

Figure 4 shows an example of dynamic instantiation
when a Roamlet migrates from a PC to a PDA. The
Roamlet contains two DD components – a PC GUI
component, and a PDA GUI component. The Roamlet
first informs the Roam agent the required device
capabilities to run each DD component – the PC GUI
component requires a PC-equivalent device, and the
PDA GUI component requires a PDA-equivalent
device. In the 2nd step, the Roam agent on the source
device compares the target device capability with the
component’s required device capability. In the 3rd
step, the Roam agent determines that PDA GUI is the
most suitable GUI component, and the PDA GUI
component is instantiated on the target device.

2.3.3 Computation Apportioning
Computation apportioning allows a Roamlet to offload
computation and memory intensive components to any
remote servers that have the device capability to run
them. Figure 5 shows an example of computation
apportioning. The Roamlet contains a computation
component, which is a DI-component as decribed in

section 2.3.2. The Roamlet is migrating from a PC to
a PDA. The Roamlet first informs the Roam agent
that the computation component requires a PC-
equivalent device capability. In the 2nd step, the Roam
agent compares the required device capability of the
computation component with the target device
capability. Since the target device is a PDA, the Roam
agent determines that the target device does not have
the capability to run the computation component. In
the 3rd step, the Roam agent attempts to find a server
that satisfies the required device capability of the
computation component. Both the Roamlet users and
the Roam agent can specify a list of servers that can
accept off-loadable components. When a server is
found, the Roam agent directs the computation
component to be migrated to the server. In the 4th
step, the server instantiates the computation
component.

Not all components in a Roamlet are off-loadable.
The Roam system allows a Roamlet to specify
components as either non-off-loadable or off-loadable
components. Non-off-loadable components are

PC (Source Device)

Roamle
t

Roam
Agent

Device Capabilities

PDA (Target
Device)

Roamle
t

Roam
Agent

Device Capabilities

(2) Comparison

(1) Resource
Specification

(3) Dynamic Instantiation

PDA GUI Component PC GUI Component

PC GUI Component PDA GUI Component

required to run on the target device – for example, the
GUI component is typically not off-loadable.

3 Implementation
We have implemented the Roam system using the
Java language and the Java language features—RMI,
Serialization, and Reflection. The Roam system
currently runs on the PCs with JVM, and on Pocket
PC devices with Personal Java VM. In the future, we
are planning to port the Roam system to CVM or any
other Java virtual machines with RMI, Serialization
and Reflection support. The current code size of the
Roam system is approximately 24 Kbytes, which is
small enough to fit on almost all Java-capable devices.

Roamlet
Roamlet APIs
Roam Agent

JVM, PJVM, CVM, …

Figure 6: Roam Sy stem and Roamlet APIs

The Roam system provides a set of Roamlet APIs
shown in Figure 6. The Roamlet APIs provide an
application interface of the Roam agent to the
Roamlets. Due to space limitation, we will not
describe the Roamlet APIs.

4 Experiments
The purpose of experiments is to evaluate the
feasibility of the Roam system in a heterogeneous
device environment. It also illustrates the Roam
system features—runtime migration, computation
apportioning, and dynamic instantiation. The
experimental setup is shown in Figure 7. Casio E-125
is a PDA that runs Windows CE OS and PersonalJava
VM, and it is connected via a wired LAN. Notebook
runs Windows 2000 OS and standard JVM, and it is
connected via a wireless LAN. PC runs Windows
2000 OS and standard JVM, and it is connected via a
wired LAN. In the experiments, Casio PDA and
Notebook act as source and target devices for migrate-
able Roamlets. PC acts as the server device to run
offloaded components.
We implement an application called HelloWorld on
top of the Roam. It contains the following three
components shown in Figure 8:
• Click component is an off-loadable device-

independent component. It simply holds the
number of clicks that a user clicks. We assume
that it is computational/memory intensive so that
we can show computation apportioning feature of
the Roam system.

• Swing GUI component is a non-off-loadable
device-dependent GUI component for a PC
running JVM. Since it is built on top of Java
Swing libraries, it requires the JVM capability.

Awt GUI component is a non-off-loadable device-
dependent GUI component for a PDA running
PersonalJava VM. Since it is built on top of the Java

AWT libraries, it requires the PersonalJava VM or
better capability. Note that the Java Swing libraries
are not supported in PersonalJava.

Figure 7: Experimental Setup

When the HelloWorld Roamlet is started on the
Notebook (IP address = 172.21.96.17), the Swing
GUI component is instantiated, and it has the look
shown in the left window of Figure 9. “Number of
button clicks” is initially 0, and becomes 3 after
repeatedly clicking on “Click!” button. When
HelloWorld migrates to the PDA (IP address =
172.21.96.152), the Roam system dynamically
instantiates the AWT GUI component, which has the
look shown in middle window of Figure 9. During the
migration, the _click component is off-loaded to the
PC as shown in the right windows of Figure 9. We
have measured the amount of time needed for the
HelloWorld runtime migration from PC to the PDA
(and vice versa) to be less than 5 seconds.

We have implemented a second application, a
Connect4 game Roamlet. We have converted the
Connect4 Applet [13] into a Roamlet using the Roam
APIs. It contains a GUI component (it can run on both
the Notebook and the PDA) and an AI component as
shown in Figure 10. The AI component computes the
computer’s next move by building a search tree, which
is computation and memory intensive. As a result, the
AI component requires the JVM capability.

When the Connect4 Roamlet is started on the
Notebook, the AI component is instantiated on the
Notebook because the Notebook has the required
device capability. When it migrates to the PDA
(running PersonalJava VM), the AI component is off-
loaded to the PC as shown in Figure 10. We have
measured the amount of time needed for the
Connect4 runtime migration from PC to the PDA
(and vice versa), which is less than 5 seconds.

5 Conclusion
In this paper, we present the design and
implementation of the Roam system. We describe the
Roam system architecture, the Roamlet component-
based programming model, and Roam system features
– resource specification, dynamic instantiation, and
computation apportioning. We show the feasibility of
the Roam system by implementing two simple
Roamlet applications.

PC
-Windows 2000
-JVM

Casio E-125
-Windows CE
-PJVM

Notebook
-Windows 2000
-JVM

WiredLA
N

WirelessLAN

Figure 8: HelloWorld Roamlet: Dynamic Instantiation and Computation Apportioning

Figure 9: HelloWorld Roamlet

Figure 10: Connect4: Computation Apportioning

We foresee that in near future that people will use
wide varieties of mobile devices and information
appliances anywhere anytime. These devices come in
different sizes, shapes, capabilities, and
functionalities. There will be a need to create mobile
applications that can move with people to whatever
devices they are carrying with little or no human
efforts. The Roam system is an ongoing research
effort to realize this need.

References
[1] Aramira, Inc., “Jumping BeansTM White Paper”,
http://www.jumpingbeans.com/index.html, October
1999.
[2] A. Acharya, M. Ranganathan, and J. Saltz,
“Sumatra: A Language for Resource-aware Mobile
Programs”. Mobile Object Systems, J. Vitek and C.
Tschudin (eds), Springer Verlag Lecture Notes in
Computer Science.

[3] M. Izatt, T. Brecht, and P. Chan. “Ajents:
Towards an Environment for Parallel, Distributed and
Mobile Java Applications”, ACM 1999 Java Grande
Conference, June 1999.
[4] D. B. Lange, M. Oshima, “Mobile Agents with
Java: The Aglet API”, World Wide Web Journal,
1998.
[5] D. S. Milojicicc, W. LaForge, D. Chauhan,
“Mobile Objects and Agents (MOA)”, In Proceedings
of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Santa Fe, New
Mexico, April 1998.
[6] Mitsubishi Electric ITA Horizon Systems
Laboratory, “Mobile Agent Computing A White
Paper”, January 1998.
[7] ObjectSpace, Inc., “Voyager”,
http://www.objectspace.com/products/voyager .
[8] M. Strasser, J. Baumann, and F. Hohl, “Mole - a
Java Based Mobile Agent System. In 2nd ECOOP
Workshop on Mobile Object Systems, pages 28-35,
Linz, Austria, July 1996.
[9] Sun Microsystems, “PersonalJavaTM Technology --
White Paper”, August 1998.
[10] Sun Microsystems, “JSR #000036 J2METM
Connected Device Configuration”, August 2000.
[11] Sun Microsystems, “JavaTM 2 Platform Micro
Edition (J2METM) Technology for Creating Mobile
Devices, White Paper”, May 2000.
[12] Sun Microsystems, Inc. “J2ME CLDC/KVM
Palm Release: Release Notes/CLDC 1.0”, May 2000.
[13] S. Wiebus, Connect4 Applet.

PC
172.21.96.19

Click
component

Notebook 172.21.96.17

Roamlet

Swing GUI
component

Click
component

PDA
172.21.96.152

Roamle
t

AWT GUI
component

Dynamic
Instantiation

Computation
Apportioning

Roamlc
t

PC
172.21.96.19

Notebook
172.21.96.17

AI component

Roamle
t GUI component

AI component

Computation
Apportioning

PDA
x.x.x.152

GUI Component

