

Modeling and Simulation Comparison of Two Time
Synchronization Protocols

Keng-hao Changa, Tsung-Han Linb, Hao-hua Chua,c, Polly Huangb,c

Department of Computer Science and Information Engineeringa,
Department of Electrical Engineeringb,

Graduate Institute of Networking and Multimediac

National Taiwan University, Taipei, Taiwan
r93018@csie.ntu.edu.tw, {b90901046, haochu}@ntu.edu.tw, phuang@cc.ee.ntu.edu.tw

Abstract—To infer correctly application semantics, sensor network
applications often need accurate times on observations that are
reported from distributed sensor nodes. Since the nodes’ local clocks
can go out-of-sync due to clock drifts, a networked time
synchronization protocol is needed to synchronize their clocks to a
reference clock. This paper provides performance modeling and
comparison between two time synchronization protocols: TPSN
clock synchronization (clock-sync) and TSS event synchronization
(event-sync). Their main difference is that the TPSN clock-sync
synchronizes all nodes’ local clocks to a global reference clock,
whereas TSS event-sync synchronizes events’ generation times from
different local nodes to their sink nodes’ clocks. Although these two
time synchronization protocols have their respective limitations in
application scenarios, they are comparable in that they also share a
large domain with none of these limitations. This paper evaluates
these two protocols by considering different ad-hoc network sizes,
node mobility levels, and traffic volumes. In order to fully
understand the tradeoffs between these two time synchronization
protocols, we have derived analytical models on their performances
and conducted simulations to measure the impact of these variables.
Both the simulation results and analytical models show that (1)
event-sync provides much better accuracy than clock-sync, (2)
under very high node mobility level, clock-sync may achieve better
accuracy than event-sync, and (3) under increasing traffic volume
clock-sync scales better. A selection guideline is derived showing how
to choose the optimal class of time synchronization protocols under
different sensor network dynamics, traffic dynamics, and
application requirements.

Keywords – Time synchronization, sensor networks,
performance evaluation.

I. INTRODUCTION
Many recent works have devised very creative and successful

applications using wireless sensor networks (WSNs) [1][2] to
address a wide array of real-world problems. These include:
monitoring health conditions of the elderly living independently
in their homes [3][4], tracking endangered species across large
remote habitats [5], detecting pollution levels in the open ocean,
and monitoring soil and pest conditions on farms [6]. In order to
infer correctly from the data, accurate times must be attached to
the observations reported from distributed sensor nodes.

The traditional approach is to synchronize sensor nodes’ local
clocks to a global reference clock. In this paper, we refer to this
class of synchronization mechanisms as clock synchronization
(clock-sync). However, not all applications require their nodes’
local clocks to be synchronized to a global clock. For example, if
we only need to know the relative time of the observations, it is
sufficient to synchronize the timestamps among these
observations at a sink (or gateway) node to correctly infer
application semantics. This class of time synchronization
methods is called event synchronization (event-sync). The clock
and event synchronization mechanisms are different from the
event order synchronization mechanisms such as Lamport’s
logical clock scheme [7] where the finer-grained timing
information is no longer available.

These two classes of time synchronization have different
assumptions on and limitations for applications. For examples,
the clock-sync does not work in a sparse wireless sensor network
in which the sensor nodes are not always fully connected. On the
other hand, the event-sync does not provide a global reference
clock to applications. Despite their differences, these two classes
of time synchronization protocols share a large domain of sensor
network applications, in which the networks are not sparse and
the knowledge of relative event time is sufficient. Consider the
examples of sensor network applications that track the
in/out-flow of merchandize in stock or monitor the habitat of a
bio-diverse island. There are a limited number of more powerful
sink nodes that collect observations from sensor nodes. Then,
they execute application logics on these observations to process
temporal information. In these applications, it is sufficient to
synchronize the timestamps contained within observations
according to the sink node’s clock, rather than to synchronize the
sensor nodes’ clocks to the sink node’s clock or a global clock.
Under this common application domain, these two classes of time
synchronization mechanisms are both applicable. Therefore, it
becomes meaningful to understand and compare their
performance tradeoffs. This helps application developers choose
the appropriate class of time synchronization under different
network and traffic scenarios.

No existing studies were found that compare performance of
these two classes of time synchronization mechanisms under

 1

different network and traffic dynamics, e.g., node size, node
mobility, traffic volume, etc. This work is believed to be the first
to provide detailed and quantitative analysis comparing these two
classes of time synchronization.

Previously, developers of sensor network applications could
only rely on their intuitions to predict performance. For example,
in a large-scale sensor network, clock-sync maintains a global
clock by exchanging sync messages (overhead) across a large
number of sensor nodes, hence, generates a high volume of
overhead traffic. Intuition suggests this is expensive. Intuition
also suggests that for a traffic pattern of infrequent events,
event-sync is likely to produce decreased overhead because it
synchronizes fewer events and events travel a limited area of the
network. Nonetheless, these are only intuitions. To test these
intuitive hypotheses, we quantitatively compare the performance
tradeoffs.

A recently proposed synchronization protocol from each class
was selected: TPSN [8] represents the clock-sync class and TSS
[9] represents the event-sync class. In order to provide a thorough
evaluation, analysis, and comparison between their performances
and overheads, we conducted the following studies:

• We developed analytical models to predict the
synchronization accuracy and overheads of TPSN and
TSS under different network and traffic dynamics.

• We conducted ns2-simulation on TPSN and TSS to
obtain their accuracy and overheads under different
network and traffic dynamics.

• We showed that our derived analytical models are
consistent with simulation results, and can clearly
explain them.

• We combine the simulation results and the analytical
models to provide a thorough evaluation and comparison
between TPSN and TSS. Specifically, the analytical
models decompose synchronization error into
comparable individual error components. Then we
identify and quantify the impact of different network and
traffic dynamic factors on these individual error
components.

• Finally, we derive a selection guideline showing how to
choose the better time synchronization mechanism given
different network dynamics, traffic dynamics, and
application requirements.

The remainder of this paper is organized as follows. Section II
presents the background of time synchronization for wireless
ad-hoc networks. Section III describes the protocol mechanisms
of TPSN and TSS, and develops analytical models of their
accuracy and overheads. Section IV explains the simulation setup
and shows the simulation results. Section V discusses the
selection guideline derived from the simulation results and draws
our conclusion.

II. BACKGROUND
Time synchronization mechanisms for wireless sensor

network can be categorized into two general classes – clock
synchronization and event synchronization. In the clock
synchronization, several promising algorithms were recently
proposed. For examples, Elson et al. proposed the
Reference-Broadcast Synchronization (RBS) [10]. For RBS,
within a one-hop neighborhood, a beacon node is selected to
periodically broadcast a reference beacon to all its one-hop
neighbor nodes. When the neighbor nodes receive this beacon,
they exchange their beacon arrival timestamps according to their
local clocks. Since all one-hop neighbor nodes are likely to
receive the same beacon around the same time, each neighbor
node can then estimate the clock offset between its local clock and
any one of its one-hop neighbor node’s local clocks, by simply
taking the difference between its beacon arrival timestamp and its
neighbor node’s beacon arrival timestamp. To extend this
protocol to a multi-hop network, consider a network divided into
multiple one-hop clusters. Some nodes bridge adjacent clusters
i.e., they are within the intersection regions of two or more
adjacent clusters. These bridge nodes are used to estimate the
clock offsets among nodes residing in adjacent clusters. Based on
experiments with Berkeley Motes, the RBS authors reported an
average synchronization error of 11 µs (using 30 reference
broadcasts) between one-hop neighbors, and the error grows
O(n) between nodes that are n hops away.

Moroti et al. proposed the Flooding Time-Synchronization
Protocol (FTSP) [11]. Basically in FTSP a leader node is selected
in the sensor network. The leader node’s clock is used as the
global reference clock. To synchronize other nodes’ clocks to the
reference clock, the leader node periodically floods the entire
sensor network with a sync message containing its current time.
When a node receives a sync message, it records the leader’s
reference time and the arrival time. Then it floods this sync
message to its one-hop neighbors. Since a node can receive the
same sync message multiple times, i.e., one from each of its
one-hop neighbors, it can estimate its clock offset and rate
difference from the leader node. Based on experiments with the
8x8 grid of Berkeley Motes, the FTSP authors reported an
average synchronization error of 11.7 µs over 10 minutes.

Ganeriwal et al. proposed the Timing-sync Protocol for
Sensor Networks (TPSN) [8]. TPSN is based on a spanning tree
structure that connects all the nodes in the network. TPSN first
selects a node to be the root of this spanning tree. This root node
periodically broadcasts a sync-request message to its immediate
child nodes in the spanning tree (first level nodes). After the root
node completes pair-wise synchronization with the first level
nodes, the second round of pair-wise synchronization begins
between the first level nodes and their immediate child nodes
(level nodes). The round of pair-wise synchronization continues
down the spanning tree until all nodes are synchronized. Based on
experiments with two adjacent Berkeley Motes, the TPSN
authors have reported an average synchronization error of 16.9
µs.

 2

These three clock-sync methods all show a low average
synchronization error. We choose TPSN as the representative of
the clock-sync class for two reasons: (1) TPSN is more recent,
and (2) the authors of TPSN claim that TPSN can achieve double
the precision of RBS. We did not choose FTSP because of its
flooding mechanism. In a large sensor network, flooding
generates heavy overhead. In addition, given the similarity
between FTSP and TPSN in adjusting the clock, we believe they
have similar accuracy.

Time-stamp synchronization (TSS) [9] by Römer suggests
that instead of synchronizing every node's clock to a global time,
one could obtain the event generation time by estimating and
accumulating its hop-by-hop delay. This mechanism determines
the event timing relative to the sink’s clock, a function that a clock
synchronization mechanism can also provide. We choose
Romer’s mechanism for comparison because it is the only event
synchronization mechanism identified in the literature.

III. MECHANISMS AND ANALYTICAL MODELS
We describe protocol mechanisms of TPSN and TSS, and

develop their analytical models on performances.

A. TPSN (Clock-sync) Protocol Mechanism
TPSN [8] has two phases in its process: “level discovery” and

“synchronization”. A hierarchical structure with a root node is
first created in level discovery phase. Then in synchronization
phase, nodes synchronize their clocks to the root node’s clock
using the hierarchical structure constructed earlier.

(a) Level Discovery Phase: This phase of TPSN happens at
the beginning, after the network has been setup. To start, the root
node assigns itself a level 0 and broadcasts a level_discovery
packet. This packet holds the node identity and the level number
of the root node. When its neighbors receive this packet, they
assign themselves a greater level number than received in the
packet, say level 1. Then they continue to broadcast
level_discovery packets with their own node identity and level
number. This process lasts until every node in the network is
assigned a level number. Once a node is assigned a level, it
ignores any other level_discovery packets that are received
afterwards. This ensures that flooding does not congest the
network. At the end of this phase, a hierarchical structure with a
root node is created for use in the next phase.

(b) Synchronization Phase: The root node starts this phase by
broadcasting a time_sync packet. Upon its reception, the nodes
on level 1 wait for a random time then send a
synchronization_pulse packet to the root node. The randomized
waiting prevents collisions caused by contention for media
access. The root node replies accordingly with acknowledgement
packets. Therefore, all nodes belonging to level 1 can correct their
clocks according to the clock of the root node. In addition, the
nodes on level 2 will overhear the two-way message exchange

because they have at least a neighbor on level 1. Consequently,
the nodes on level 2 will each send a synchronization_pulse
packet to their level-1 neighbors for synchronization. This is
applied recursively with nodes on level i synchronizing their
clocks to nodes on level i-1. Eventually, every node in the
network has its clock synchronized to the reference clock of the
root node, thus, the global clock synchronization is achieved.

But, exactly how are these synchronizations of levels
completed? In this phase, pair-wise synchronization is achieved
across the edges of the hierarchical structure built in the previous
phase. We first consider how to synchronize a pair of nodes
through a two-way message exchange. As depicted in Fig. 1,
there are two nodes called Ni and Ni-1. t1 and t4 are the times
measured according to node Ni’s local clock; t2 and t3 are the
times measured according to node Ni-1’s clock. At time t1, node Ni
sends a synchronization_pulse packet to node Ni-1. The
synchronization_pulse packet holds the level number of node Ni
and the value of t1. Node Ni-1 receives this packet at t2, where t2 is
equal to (t1 + ∆ + d). ∆ represents the clock drift between the two
nodes, and d represents the sending delay (including the time to
send, propagate, and receive the packet). At time t3, node Ni-1
sends back an acknowledgement packet to node Ni. This
acknowledgement packet holds the level number of node Ni-1 and
the values of t1, t2, and t3, and node Ni receives the packet at t4.
TPSN assumes the delays of synchronization_pulse packet and
acknowledgement packet are the same, so t4 is equal to (t3 - ∆ +
d). Assuming that the clock drift and the propagation delay do not
change in this small period of time, node Ni can calculate the
clock drift and propagation delay using the following formula:

2
)()(;

2
)()(34123412 ttttdtttt −+−

=
−−−

=∆ (1)

Node Ni can therefore synchronize its local clock to Ni-1’s
since it has information about the clock drift between them.

Figure 1. Pair-wise Synchronization of TPSN. t2 and t3 are measured in node

Ni-1’s clock, and t1 and t4 are measured in node Ni’s clock.

B. TPSN Analytical Models

d

t’4

Ni-2

t4

t2

t1

t3 Ni-1

Ni

 3

We analyze the synchronization error in TPSN, and develop
its analytical model. As shown in Fig. 2, the TPSN
synchronization error is composed of three error components:
pair-wise synchronization error (Esync) caused by the delay
estimation when a parent node is exchanging the global clock
value with its one-hop child nodes, external clock skew error
(Eext) caused by clock skews of intermediate nodes on the
transmission path while they are forwarding the synchronization
message from the root node and the target node, and internal
clock drift error (Eint) caused by clock skew of the target node as
its local clock drifts away from the most recent synchronization
time point:

E
tpsn

 = Esync + Eext + Eint (2)

The pair-wise synchronization error (Esync) comes from
TPSN’s assumption that sending delay of synchronization_pulse
packet and that of acknowledgement packet are the same.
However, in real deployment, the forward and reverse link delays
can be asymmetric. This leads to incorrect calculation of the
clock drift value, i.e., ∆ in Equation (1). Denote the average time
difference between the forward link delay and reverse link delay
as u. At the end of each pair-wise synchronization (i.e., t4 in Fig.
1), the asymmetric link delay will cause the clocks between the
parent and child nodes to be off by u/2 (on average). Consider a
target node at level l, since there are l number of such pair-wise
synchronizations occurred between pairs of intermediate nodes
on the path between the root node and the target node, the total
synchronization error is the sum of all pair-wise synchronization
errors on that path. It can be written as follows.

2
ulEsync
⋅

= (3)

The external clock skew error (Eext) is caused by clock skews
of intermediate nodes as the sync message (containing the global
clock) is pushed from the root node down the hierarchy to target
nodes. Since each pair-wise synchronization takes some amount

of processing and transmission time, this hop latency needs to be
accounted for by each intermediate node using its local clock,
added to the global clock, and then passed it down the hierarchy.
This clock skew error is external in the sense that the error is not
contributed by the target node, but rather clock skews from these
external intermediate nodes. Denote the average clock skew (i.e.,
clock drift rate) on any non-root nodes as r. Denote the average
hop latency time for a pair-wise synchronization as d. At the end
of each pair-wise synchronization (i.e., t4 in Fig. 1), clock skew
will cause the clock on an intermediate node to drift apart on
average by (d* r) from the global clock. Consider a node on level
l, since there are l number of pair-wise synchronizations occurred
on the path between the root node and the target node, the external
clock skew error is the sum of clock skews on that path.

rdlEext ⋅⋅= (4)

The internal clock drift error (Eint) is caused by the drift of the
clock on the target node between the current time and the most
recent synchronization time point. This clock drift error is called
internal in the sense that the error is contributed solely by the
target node’s local clock. Denote this synchronization time
interval as T. If the data generation time occurs uniformly over
this time interval, the average amount of clock drift away from
the global clock (since the last synchronization time point) can be
derived as follows.

2int
TrE ⋅

= (5)

The aggregate synchronization error for TPSN (Etpsn) is the
sum of these three error components. Combining Equations (3),
(4), and (5) gives the following equation for Etpsn.

2
)

2
(TrdrulEtpsn ⋅

+⋅+= (6)

Target node
receiving
sync_msg

Root node
initiating

sync_msg

Target node
taking

timestamp

Esync: one-way delay estimation error
during pair-wise synchronization

Eext: clock drifts due to clock skews in
intermediate nodes’ clocks

Eint: clock drift in target’s local clock

Time
T/2

u

d

u

d

u

d

Intermediate
nodes

receiving
sync_msg

Figure 2. TPSN synchronization error decomposed into three error components

 4

C. TSS (Event-sync) Mechanism
Rather than synchronizing every node's clock to a global

clock, TSS [9] estimates and accumulates the hop-by-hop latency.
When a data packet arrives at the sink, the packet generation time
relative to the sink’s clock can be traced back from the
accumulated end-to-end latency. TSS then determines the
relative data generation time to the sink’s clock. Wireless links
among the nodes are assumed to employ a CSMA/CA-like
MAC-layer mechanism where an acknowledgement is sent for
each data to assure the reception of the data packet. The hop
latency, d, can be estimated using the following formula.

 (7)
1

)()(2314 ACKDEstttttd −−−−=

As depicted in Fig. 3, t4 - t1 can be obtained using the
receiver’s clock and t3 – t2 from the sender’s clock. The value of
t3 – t2 can be piggybacked on the Data2 packet to the receiver.

 is the estimation of the delay of ACK1. We can use the
transmission delay to estimate this value, as in (8). This
estimation ignores some CPU processing time and the
propagation delay.

1ACKDEst

bandwidth

sizepacketACKEst
ACKD

__1
1
= (8)

With the above information, the hop latency d of Data2 at the
receiver node can be calculated. Immediately, the latency can be
accumulated and carried along with the data packet. To estimate
the hop latency, each node needs to keep two extra states: the
ACK departure time and the ACK arrival time of the latest data
packet. When a data packet is ready to be sent but cannot find the
state information to be piggybacked, e.g. the first flow of packets,
an additional overhead will be sent in order to set up the state
information.

D. TSS Analytical Models
We analyze the synchronization error in TSS and develop its

analytical model. The analytical model is similar to that of TPSN,
composing of three components shown in Fig. 4: pair-wise
synchronization error (Esync) caused by the delay estimation on its
transmission path, external clock skew error (Eext) caused by
clock skews of intermediate nodes while they are forwarding
data packets from the source node and the sink node, and
internal clock drift error (Eint) caused by the clock skew of the
target node as its local clock drifts between the arrival time of a
packet and the arrival time of its subsequent packet carrying its
end-to-end delay.

Etss = Esync + Eexternal + Einternal (9)

The pair-wise synchronization error comes from hop delay
estimation in TSS. TSS assumes that the ACK packet
transmission time (t2-t1 in Fig. 3) can be estimated according to
Equation (8). However, in real deployment, other small delay
factors such as the protocol processing time are not considered.
As a result, TSS has the delay estimation error. Denote the
average delay estimation error as u. Consider a data packet with a
path-length of l between a source node and a sink node. Since
there are l numbers of such forwarding hops, the total pair-wise
synchronization error is the sum of all pair-wise synchronization
errors on that path. It can be written as follows.

P

Data2
d

Ack2 Ack1 Data2 Data1

Data1

Node i+1

Node i-1

Node i

t4

t2

t1

t3

Figure 3. Event- Synchronization of TSS. ACK1 departs at t1 and arrives
at t2. Data2 arrives at the sender at t3, and arrives at the receiver at t4. d is

the hop latency of Data2 at the sender.

Target node
receiving

data1 packet

Source node
sending data1

packet

Esync: one-way delay estimation error

Time

Eext: clock drifts due to clock skews in
intermediate nodes’ clocks

Intermediate
nodes receiving

data1 packet

Target node
receiving

data2 packet

Eint: clock drifts due data packet
interarrival time at the target node

P

u

d

u

d

u

d

Figure 4. TSS synchronization error decomposed into three error components

 5

ulEsync ⋅= (10)

The external clock skew error (Eext) is caused by clock skews
of intermediate nodes as the data packet is forwarded from a
source node to a sink node, and its per-hop delays are
accumulated in the subsequent data packet. Denote the average
per-hop delay time as d. At the end of each hop transmission,
clock skew will cause the clock of an intermediate node to drift
apart on average by (d*r) from the global clock. Consider a data
path of length l. The total external clock skew error is the sum of
individual clock skew error over these l intermediate nodes. It
can be written as follows.

rdlEext ⋅⋅= (11)

The internal clock drift error (Eint) is caused by the clock drift
of the sink node between the arrival time of a data packet (e.g.,
data2 packet) and the arrival time of the previous data packet
(e.g., data1 packet) carrying the accumulative hop-by-hop delay
of the previous packet (e.g., data1 packet). This clock drift error
is internal in the sense that the error is contributed solely by the
sink node’s local clock. Denote the average inter-arrival time of
a packet stream as P. The amount of clock drift from the packet
inter-arrival times can be derived as follows.

PrE ⋅=int (12)

The aggregate synchronization error for TSS (Etss) is the sum
of these three error components. Combining Equations (10), (11),
and (12) gives the following equation for Etss.

PrdrulEtss ⋅+⋅+=)((13)

E. Comparison of Analytical Models of TPSN and TSS
In the analytical models of TPSN and TSS, we have found

that they both have three identical error components. The first one
is the protocol-specific hop delay estimation error (Esync). In
TPSN, this comes from the asymmetry of packet exchange
between two nodes. In TSS, this is the propagation delay of an
acknowledgement packet.

The second component is the clock skews (Eext) over the
end-to-end delay. When the sync message propagates through the
network, the time that this information stays on each intermediate
node would contribute some errors from the clock skews. In TSS,
this is the end-to-end delay of each data packet from a source
node to a sink node. In TPSN, it is the end-to-end delay of each
sync message from the root node to a target node.

The third component is the amount of local clock drift (Eint)
over the last synchronization point. In TPSN, synchronization is
done periodically, so the amount of local clock drift is
proportional to how fast the network is resynchronized.
Interestingly, this error also shows up in TSS. Because the clocks
in TSS are synchronized by the acknowledgement packets, there
are also time intervals between the times when the clocks are
synchronized and when the local clocks are being used. If the

source nodes send data packets in a constant rate, this time
interval will basically be the interval of sending data.

IV. SIMULATION
TPSN and TSS were implemented on the ns-2 simulator [12].

We describe the details for the simulation setup, evaluation
metrics (error and overhead), and evaluation variables (network
size, node mobility level, and traffic volume). Based on the
analytical models derived in Section III, we analyze the impacts
of changing these evaluation variables on the evaluation metrics.
We also verified the analytical model by the simulation results.

A. Simulation Setup
In all simulations, the sensor nodes are placed on a predefined

grid in a uniformly random fashion. The data sink is fixed in one
corner of the grid, while other nodes are randomly chosen as data
sources. The communication range of all nodes is set to be 40
meters. Each node has a constant clock skew rate selected from
0.5*10-6 to 1.5*10-6. Other setup aspects include directed
diffusion [13], a well-known data-centric routing mechanism, and
IEEE 802.11, a popular wireless link technology. The simulation
time is 400 seconds. The data used are restricted to those
collected after 100 seconds simulation time. This avoids taking
the start-up time instability into the simulation results.

For all of the evaluation parameters, the base case is defined
to have 40 nodes on an 80x80m2 grid, and 10 of these sensor
nodes are data sources. Each source sends a 100 bytes data packet
every 5 seconds. Unless specified otherwise, these are the default
values for the parameters.

An uncertain CPU processing delay before transmitting
time-sync messages contributes errors in TPSN and TSS. We
however do not to simulate this uncertainty in the simulations
for two reasons: (1) the uncertainty is hardware dependent, and
there is no model proposed yet to simulate it in a simulator; and
(2) omitting CPU processing time is applied to both TPSN and
TSS, making it a fair comparison. Omission of CPU processing
delay makes the forward and reverses link delay in TPSN
perfectly symmetric. In addition, it also reduces the hop-delay
estimation error in TSS.

B. Evaluation Metrics
In order to evaluate the performance of event synchronization

and clock synchronization, the following two metrics are
investigated:

• Synchronization Error: This represents the difference
between actual data generation time and estimated data
generation time. The correctness of the estimated data
generation time is important, because it is used to infer
temporal relation and order of detected events. Inaccurate
temporal information can cause incorrect application
semantics.

• Overhead: This represents the traffic produced due to the
synchronization mechanisms in proportion to the total

 6

data traffic. Lower synchronization overhead implies
higher throughput and efficiency of the network.

C. Evaluation Variables
To compare the error and overhead of the two time

synchronization mechanisms, scenarios are simulated with
varying network sizes, node mobility levels, and data rates.

• Network Size: To vary the network sizes, the number of
nodes is changed from 20 to 140 with incremental steps
of 20 nodes. In order to fix the network density with
increasing number of nodes, the grid size is varied
accordingly.

• Node Mobility: In the node mobility model, each node
has a randomly generated target location and moves to
that location with a random speed (maximum speed
10m/s). To change the levels of node mobility, the pause
time between the target locations is adjusted from 0 to
400 seconds. A smaller pause time means higher
mobility.

• Data Rates: To vary the data rates, we adjust the packet
sending rates at the source nodes, from a fixed-size
packet every 4 (22) seconds to every 0.015625 (2-6)
second. A higher data rate means a higher traffic volume.

D. Simulation Results
We report our simulation results in the order of evaluation

variables listed above: (1) the effects of varying network sizes on
accuracy and overhead of the clock sync (TPSN) and event sync
(TSS) mechanisms, (2) the effects of varying node mobility
levels, and (3) the effects of varying data rates. For each
simulation scenario, we generate ten random cases, in which each
case represents a different network topology and pairs of
source-sink nodes. The synchronization error and overhead are
obtained by running both the clock-sync (TPSN) and event-sync
(TSS) on the same ten random cases per scenario. Each data point
in the simulation results shows the average values of these ten
random cases in each scenario.

To verify that the analytical model (described in Section III)
is consistent with the simulation result, we check how well the
actual synchronization error measured from the simulation
matches with the expected synchronization error derived from our
analytical models. If they match well, simulation results validate
our analytical models. In order to compute the expected
synchronization error from the analytical models, it requires
plugging in the correct values for parameters (u, l, P, T, and d) in
Equations (6) & (13). The correct values for these parameters: u
(the average hop delay estimation error) and r (the average clock
skew rate) can be obtained directly from the network topology
and traffic volume settings in our simulation scenarios. The
correct values for the parameters: l (the average node level in
TPSN or the average path length in TSS), d (the average elapsed
time for pair-wise synchronization), T (the synchronization
period in TPSN), and P (the average packet inter-arrival time in
TSS) can be observed during simulation. For example, to

compute TPSN’s Eext, the values for l and d are collected during
the simulation, and then multiplied with r (set to be 10-6) to
compute Eext. Then, we can plug-in these parametric values into
the analytical models to compute three individual error
components Esync, Eint, and Eext. Furthermore, we can sum these
three error components to compute expected overall errors Etpsn’
and Etss’.

Fig. 5 shows the synchronization error decomposed into three
individual error components for the TPSN and TSS under
different network sizes, node mobility levels, and data rates. Each
plot contains the following five lines:

• Line (1) shows the actual simulation results of Etpsn and
Etss;

• Lines (2-4) show the expected Esync, Eext and Eint obtained
by applying the simulation’s values to Equations (3) ~ (5)
and (10) ~ (12) in the analytical models; and

• Line (5) shows the expected synchronization errors Etpsn’
and Etss’ as the sums of the above three error components.
Note that they are expected values different from the
actual values (Etpsn and Etss) measured in the simulation.

By observing the similar trends and magnitudes between lines
(1) and (5) in Fig. 5, we can check if the analytical models are
consistent with the simulation results for both TPSN and TSS.
Note that there will be small discrepancies between these two
lines because Etpsn’ and Etss’ are the expected synchronization
error computed from analytical model, whereas Etpsn and Etss are
the actual synchronization error from simulation.

1) Impact of network size on accuracy & overhead
Fig. 5(a) shows the synchronization error of TPSN under

different network sizes. The actual synchronization error from
the simulation is shown as line (1), and it exhibits a growing
trend as the network size increases. This is expected given that a
larger network size implies a higher level of the clock
synchronization hierarchy, therefore, lengthens the path for a
sync message to travel from the root node to a target node. The
expected synchronization error derived from the analytical
model is shown as line (5), and it also exhibits the same growing
trend as the actual synchronization error from the simulation.
Close similarity between lines (1) and (5) shows that simulation
results are consistent with our TPSN analytical model. To gain
better understanding on how network size affects TPSN’s
synchronization error, we analyze the changes in these three
error components (Esync, Eext and Eint) under different network
sizes. Esync is shown as line (2) in Fig. 5(a). It is a zero line for
reasons given at Section IV-A: i.e., the simulator is configured
such that the forward link delay and the reverse link delay are
perfectly symmetric, making (u=0). Eext is shown as line (3) in
Fig. 5(a). It also exhibits a growing trend with increasing
network size. This is in accordance with Equation (4) -- since a
larger network size increases the depth of TPSN tree hierarchy
(l), this also leads to higher Eext. Eint is shown as line (4) in Fig.
5(a). It too exhibits a growing trend with increasing network

 7

size. This is somehow unexpected by our analytical models.
Given that the clock skew rate (r) and synchronization period
(T) are fixed in the simulation setup, Equation (5) says that Eint
should not change with increasing network size. After analyzing
the simulation results, we have found an interesting relation
between the network size and the synchronization period (T).
This relation provides an explanation for the growing Eint. This
relation can be explained as follows: (1) a larger network
increases the average synchronization path length between the
root node and other nodes down the hierarchy, (2) a longer path
length leads to a higher probability of lost sync messages on that
path, and (3) missing sync messages has the same effect as
increasing the synchronization period (T). Given the presence of
this relation, we can derive the adjusted synchronization period
(T’) as a function of the message lost probability p (which is a
function of the hierarchy level l) and original synchronization
period (T):

T
lp

T
))(1(

1'
−

∝ (14)

Fig. 5(b) shows the synchronization errors of TSS under
different network sizes. The actual synchronization error from
the simulation, shown as line (1), matches well with the model’s
expected synchronized error, shown as line (5). In other words,
simulation results are consistent with our TSS analytical model.
Next, we analyze the changes in three error components (Esync,
Eext and Eint) under different network sizes. Esync and Eext shown
as lines (2) and (3) exhibit a growing trend, while Eint shown as
line (4) is flat. This is in accordance with Equations (10) and
(11), which say that Esync and Eext are affected by the length of
data path from the source node to the sink node (l), which grows
with increasing network sizes. On the other hand, Eint is not
affected by the changing network sizes, because the network size
has no effect on any factors in Equation (12). Although both
Esync and Eext grow with increasing network size, their scales (<
0.1 microsecond) are one order of magnitude smaller than Eint
(2~3 microseconds). As a result, the overall TSS error is
dominated by the flat Eint.

Fig. 6(a) shows the protocol overhead ratios of TSS and
TPSN under different network sizes. The overhead ratio is
defined as the ratio between the amount of protocol overhead
and the amount of data payload transfer. The overhead ratio of
TSS increases only slightly with increasing network size,
because TSS needs additional state establishment packets with
longer data path. On the other hand, the overhead ratio of TPSN
increases more dramatically than that of TSS. As the network
size increases, the amount of synchronization packets in TPSN
increases more rapidly than the amount of data packets.

Simulation results and analytical models have shown that
TSS has smaller synchronization error, lower protocol overhead,
and better scalability than TPSN under increasing network size.

2) Impact of node mobility on accuracy & overhead
Fig. 5(c) shows the synchronization error of TPSN under

different node mobility levels. Node mobility levels are adjusted
by changing the amount of pause time (from 0 ~ 400 seconds) in
the simulation. The actual synchronization error from
simulation, shown as line (1), exhibits a growing trend as node
mobility level increases. This is expected given that higher node
mobility brings about more rapid change in the TPSN
synchronization hierarchy. Before a new hierarchy is
re-discovered by the mobile nodes that have moved away from
their old neighbor nodes, they may not receive any
synchronization messages. As a result, their local clocks may
continue to drift out-of-sync. Next, we apply the analytical
models to help explain the effects of different node mobility
levels on TPSN’s synchronization error. We decompose the
overall synchronization error into three error components (Esync,
Eext and Eint) shown in Fig. 5(c). For the reason given at the end
of Section IV-A, Esync , shown as line (1), is a zero line. Eext
shown as line (3) exhibits a relatively flat line. This is expected
given that a higher level of node mobility does not change the
size of the synchronization hierarchy l. Eint shown as line (4)
exhibits a growing trend with increasing levels of node mobility.
This is also expected given the following reasoning: higher node
mobility implies higher probability of broken hierarchy, which
in turn leads to higher probability that nodes may fail to be
synchronized with upper level nodes. This has the same effect as
raising the average synchronization time interval T, causing
higher synchronization error. An interesting phenomenon in
TPSN is that when the node mobility level moves to the high
end of the extreme (pause times = 50~0 seconds), the
synchronization error actually falls. This phenomenon can be
explained as follows: since high mobility enables the root node
to encounter more one-hop neighbor nodes over the course of its
movements (high mobility in non-root nodes also increases the
probability that they will encounter the root node); therefore,
mobility helps to spread the root node’s global clock to a larger
number of level-1 neighbor nodes. This is an example where
mobility can sometimes be a positive factor.

Fig. 5(d) shows the synchronization error of TSS under
different node mobility levels. The actual synchronization error
from simulation is shown as line (1). It exhibits a two-step
behavior – a flat line under low node mobility, but changes to a
steep line under high node mobility. This two-step behavior can
be explained by decomposing the overall synchronization into
three error components (Esync, Eext and Eint) and analyzing them.
Esync shown as line (2), exhibits a decreasing trend with
increasing node mobility levels. The reason is the restriction on
the routing mechanism – when the network is dynamic under
high node mobility, data is more likely to be dropped before
reaching the sink node. Therefore, the average data path length
(counting dropped packets) will decrease. Simulation results
confirm this observation. Eext shown as line (3), exhibits a slight
growing trend with increasing node mobility. This is in
accordance with Equation (11), which says that the positive
factor influencing Eext is the hop delay (d). The increase of Eext is

 8

 9

Fig. 5. Graphs in (a), (c), and (e) represents synchronization errors for TPSN under the following dynamic factors: different network sizes, node mobility
levels, and data rates. Graphs in (b), (d), and (f) represents synchronization errors for TSS under these dynamics factors

(d)

(f)

(b)(a)

(c)

(e)

mainly due to a larger d induced in a dynamic network. This is
due to data packets spending more time waiting on intermediate
nodes that are searching for the next hop to forward the data
packets. Simulation results confirm this observation. In addition
it shows that the effect of a larger d, which raises Eext, dominates
the effect of shorter l, which lowers Eext. As a result, Eext exhibits
a growing trend. Eint also exhibits a growing trend with
increasing node mobility. This growth is mainly due to a larger
data packet inter-arrival time (P). The rise in packet inter-arrival
time is caused by frequent switching of routing paths. Switching
of routing paths is a result of intermediate nodes repeatedly
moving in and out of routing paths, making use of previously
established time-sync states on nodes. Since Eint is the dominant
factor, the overall sync error exhibits the growing trend,

Fig. 6(b) shows the protocol overhead ratios of TSS and

TPSN under different levels of node mobility. Since higher node
mobility results in higher frequency of topology changes, extra
packets are sent to reconstruct the new TPSN hierarchy. As a
result, the protocol overhead is raised. In contrast, TSS does not
maintain any synchronization hierarchy. TSS has to re-establish
time-sync states on the new routing paths when intermediate
nodes move out of the routing paths. However, the amount of
overhead increased in TSS is not as significant as TPSN.

Simulation results and analytical models have shown that TSS
has smaller synchronization error and lower protocol overhead
than TPSN under increasing network dynamics. Although TSS
has smaller synchronization error than TPSN, TSS’s
synchronization error grows steeper than TPSN under high node
mobility, making TSS less scalable than TPSN.

Figure 6. Protocol overhead of TPSN and TSS.

(b)(a)

(c)

 10

3) Impact of data rates on accuracy & overhead
Fig. 5(e) shows the synchronization error of TPSN under

different data rates. Data rates are adjusted by changing the data
packet sending rates at source nodes. The actual synchronization
error from the simulation, shown as line (1), exhibits a two-step
behavior. These two steps can be explained as follows. High
traffic volume eventually leads to network congestion and packet
loss. In the simulation scenario, this congestion point is the point
connecting these two steps (i.e., the packet sending interval is
approximately 2-3 second). If the lost packets contain sync
messages, nodes will miss synchronization rounds. Missing
synchronization rounds has the same effect as increasing the
sync period (T). Equation (6) says that increasing T leads to
higher synchronization error. Next, we decompose the overall
synchronization error into three error components (Esync, Eext and
Eint) shown in Fig. 5(e). Again Esync is a zero line for the reason
given at the end of Section IV-A. Eext is shown as line (3), and it
exhibits a growing trend when data rates go beyond the
congestion point. This is reasonable because network congestion
lengthens the media access time and the packet hop delay (d). Eint
is shown as line (4), and it also exhibits the growing trend after
the congestion point. The reason has already been given above –
congestion induces dropped packets and lost synchronization
messages, which can be translated into increase of the
synchronization period (T).

Fig. 5(f) shows the synchronization error of TSS under
different data rates. Interestingly, the actual synchronization
error exhibits a decreasing trend before the congestion point, and
remains flat after the congestion point. We can explain this
two-step behavior from the analytical models and by
decomposing the overall synchronization error into three error
components (Esync, Eext and Eint). Esync is shown as line (2), and it
is flat because the data path length does not change with
increasing data rates. Eext is shown as line (3), and it also
remains flat before the congestion point, but grows after the
congestion point. We can explain this two-step behavior by
looking at Equation (11) and in combination with the fact that
network congestion increases the queue length and the hop delay
(d). Eint is shown as line (3), and it exhibits a downward trend.
This can be explained by looking at Equation (12) – a high data
rate means a small packet sending interval, and this leads to a
shorter packet inter-arrival time (P) at the sink node! When data
rates are low with no congestion, Eint falls linearly because the
amount of decrease in P is linear to the data sending interval.
However, when data rates are high with congestion presence, P
does not hold a linear relation with the data sending interval,
because network congestion can slow down the actual data
receiving rate. Therefore, Eint decreases at a slower rate. The
overall synchronization error in TSS drops under low data rates
because Eint dominates the overall error. This explains the
downward trend for the first step in Etss. However, under high
data rates, Eint is small and Eext becomes the dominant factor in
Etss. This explains the slight-upward trend in the second step of
Etss.

Fig. 6(c) shows the protocol overhead ratios of TSS and

TPSN under different data rates. Since TPSN exchanges
synchronization messages at a fixed time interval independent of
data traffic volume, the overhead ratio will fall as the data rate
increases. However, it will stop dropping when data rates
increases beyond the congestion point. In comparison, TSS
exhibits a flat line because the protocol overhead is piggybacked
on the data packet, fixing its protocol overhead ratio.

Although TSS has a smaller synchronization error than
TPSN, TPSN has a significantly lower overhead under high data
rates.

V. SUMMARY AND SELECTION GUIDELINE
In conclusion, we achieve in (1) modeling the average error of

two time synchronization mechanisms, TPSN and TSS, (2)
validating the analytical models with thorough simulations, (3)
identifying that the dominant error component in TPSN is the
periodicity of synchronization and in TSS is the data rate, and (4)
deriving the following selection guideline for choosing a suitable
time synchronization protocol based on the network size,
mobility level, and data rate.

(1) When network size is large, TSS is dominantly better both in
terms of accuracy and overhead.

(2) When mobility level is high and energy consumption is
critical, TSS will be the choice. If energy consumption is
not critical, the choice should depend on the actual mobility
level. TSS appears to be better in the error to reference
clock. However, the error of TSS has a steep growing trend.
When the mobility level goes beyond the parameters used for
the experiments, the error of TSS could potentially be worse
than that of TPSN.

(3) When data rate is high and energy consumption is critical,
TPSN will be the choice. If energy consumption is not
critical, the error of TSS is lower and scales better. TSS will
be the choice in this case.

Although TSS outperforms TPSN in accuracy under most of
the cases, TSS has a fundamental limitation. It only
synchronizes the events’ generation times to the local clock of the
events’ sink node. Consider the case that there are more than one
sink nodes in the wireless sensor network. Since the clocks of
different sink nodes are not synchronized, the generation times of
events that go to different sink nodes are not synchronized. If the
application requires events to be labeled using a global reference
clock, TSS is not applicable.

REFERENCES
[1] I. F. Akyildiz,W. Su, Y. Sankasubramaniam, and E. Cayirci. Wireless

Sensor Networks: A Survey. Computer Networks, 38:393–422, 2002.
[2] A. Bharathidasan and V.A.S. Ponduru. Sensor Networks: an Overview.
[3] B.G. Celler et al., An instrumentation system for the remote monitoring

of changes in functional health status of the elderly, International
Conference IEEE-EMBS, New York, 1994, pp. 908–909.

[4] G. Coyle et al., Home telecare for the elderly, Journal of Telemedicine
and Telecare, 1 (1995) 183–184.

[5] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, Habitat monitoring: application

 11

driver for wireless communications technology, ACM SIGCOMM’2000,
Costa Rica, April 2001.

[6] Zhuohui Zhang, Investigation of Wireless Sensor Networks for Precision
Agriculture, Paper number 041154, 2004 ASAE Annual Meeting.

[7] Lamport, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7)

[8] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync
protocol for sensor networks. In First ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2003.

[9] Kay Römer. Time synchronization in ad hoc networks. In ACM
Symposium on Mobile Ad-Hoc Networking and Computing (MobiHoc),
October 2001.

[10] Jeremy Elson, Lewis Girod and Deborah Estrin, Fine-Grained Network
Time Synchronization using Reference Broadcasts, In the proceedings of

the fifth symposium on Operating System Design and Implementation
(OSDI 2002), December 2002.

[11] Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos Ledeczi. The
flooding time synchronization protocol. Technical Report ISIS-04-501,
Institute for Software Integrated Systems, Vanderbilt University, Nashville
Tennessee, 2004.

[12] L. Breslau, D. Estrin, K. Fall, S. Floyd, A. Helmy, J. Heidemann, P. Huang,
S. McCanne, K. Varadhan, H. Yu, Y. Xu, and VINT Project. Advances in
network simulation. IEEE Computer, 33(5):59–67, May 2000.

[13] Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin.
Directed diffusion: A scalable and robust communication paradigm for
sensor networks In Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCOM '00),
August 2000.

 12

	INTRODUCTION
	BACKGROUND
	MECHANISMS AND ANALYTICAL MODELS
	TPSN (Clock-sync) Protocol Mechanism
	TPSN Analytical Models
	TSS (Event-sync) Mechanism
	TSS Analytical Models
	Comparison of Analytical Models of TPSN and TSS

	SIMULATION
	Simulation Setup
	Evaluation Metrics
	Evaluation Variables
	Simulation Results
	Impact of network size on accuracy & overhead
	Impact of node mobility on accuracy & overhead
	Impact of data rates on accuracy & overhead

	SUMMARY AND SELECTION GUIDELINE
	REFERENCES

