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Abstract—To infer correctly application semantics, sensor network 
applications often need accurate times on observations that are 
reported from distributed sensor nodes. Since the nodes’ local clocks 
can go out-of-sync due to clock drifts, a networked time 
synchronization protocol is needed to synchronize their clocks to a 
reference clock. This paper provides performance modeling and 
comparison between two time synchronization protocols: TPSN 
clock synchronization (clock-sync) and TSS event synchronization 
(event-sync). Their main difference is that the TPSN clock-sync 
synchronizes all nodes’ local clocks to a global reference clock, 
whereas TSS event-sync synchronizes events’ generation times from 
different local nodes to their sink nodes’ clocks. Although these two 
time synchronization protocols have their respective limitations in 
application scenarios, they are comparable in that they also share a 
large domain with none of these limitations. This paper evaluates 
these two protocols by considering different ad-hoc network sizes, 
node mobility levels, and traffic volumes. In order to fully 
understand the tradeoffs between these two time synchronization 
protocols, we have derived analytical models on their performances 
and conducted simulations to measure the impact of these variables. 
Both the simulation results and analytical models show that (1) 
event-sync provides much better accuracy than clock-sync, (2) 
under very high node mobility level, clock-sync may achieve better 
accuracy than event-sync, and (3) under increasing traffic volume 
clock-sync scales better. A selection guideline is derived showing how 
to choose the optimal class of time synchronization protocols under 
different sensor network dynamics, traffic dynamics, and 
application requirements. 

Keywords – Time synchronization, sensor networks, 
performance evaluation.  

I. INTRODUCTION 
Many recent works have devised very creative and successful 

applications using wireless sensor networks (WSNs) [1][2] to 
address a wide array of real-world problems. These include: 
monitoring health conditions of the elderly living independently 
in their homes [3][4], tracking endangered species across large 
remote habitats [5], detecting pollution levels in the open ocean, 
and monitoring soil and pest conditions on farms [6]. In order to 
infer correctly from the data, accurate times must be attached to 
the observations reported from distributed sensor nodes.  

The traditional approach is to synchronize sensor nodes’ local 
clocks to a global reference clock. In this paper, we refer to this 
class of synchronization mechanisms as clock synchronization 
(clock-sync). However, not all applications require their nodes’ 
local clocks to be synchronized to a global clock. For example, if 
we only need to know the relative time of the observations, it is 
sufficient to synchronize the timestamps among these 
observations at a sink (or gateway) node to correctly infer 
application semantics. This class of time synchronization 
methods is called event synchronization (event-sync). The clock 
and event synchronization mechanisms are different from the 
event order synchronization mechanisms such as Lamport’s 
logical clock scheme [7] where the finer-grained timing 
information is no longer available. 

These two classes of time synchronization have different 
assumptions on and limitations for applications. For examples, 
the clock-sync does not work in a sparse wireless sensor network 
in which the sensor nodes are not always fully connected. On the 
other hand, the event-sync does not provide a global reference 
clock to applications. Despite their differences, these two classes 
of time synchronization protocols share a large domain of sensor 
network applications, in which the networks are not sparse and 
the knowledge of relative event time is sufficient. Consider the 
examples of sensor network applications that track the 
in/out-flow of merchandize in stock or monitor the habitat of a 
bio-diverse island. There are a limited number of more powerful 
sink nodes that collect observations from sensor nodes. Then, 
they execute application logics on these observations to process 
temporal information. In these applications, it is sufficient to 
synchronize the timestamps contained within observations 
according to the sink node’s clock, rather than to synchronize the 
sensor nodes’ clocks to the sink node’s clock or a global clock. 
Under this common application domain, these two classes of time 
synchronization mechanisms are both applicable. Therefore, it 
becomes meaningful to understand and compare their 
performance tradeoffs. This helps application developers choose 
the appropriate class of time synchronization under different 
network and traffic scenarios.  

No existing studies were found that compare performance of 
these two classes of time synchronization mechanisms under 
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different network and traffic dynamics, e.g., node size, node 
mobility, traffic volume, etc. This work is believed to be the first 
to provide detailed and quantitative analysis comparing these two 
classes of time synchronization. 

Previously, developers of sensor network applications could 
only rely on their intuitions to predict performance. For example, 
in a large-scale sensor network, clock-sync maintains a global 
clock by exchanging sync messages (overhead) across a large 
number of sensor nodes, hence, generates a high volume of 
overhead traffic. Intuition suggests this is expensive. Intuition 
also suggests that for a traffic pattern of infrequent events, 
event-sync is likely to produce decreased overhead because it 
synchronizes fewer events and events travel a limited area of the 
network.  Nonetheless, these are only intuitions.  To test these 
intuitive hypotheses, we quantitatively compare the performance 
tradeoffs.   

A recently proposed synchronization protocol from each class 
was selected: TPSN [8] represents the clock-sync class and TSS 
[9] represents the event-sync class. In order to provide a thorough 
evaluation, analysis, and comparison between their performances 
and overheads, we conducted the following studies: 

• We developed analytical models to predict the 
synchronization accuracy and overheads of TPSN and 
TSS under different network and traffic dynamics.  

• We conducted ns2-simulation on TPSN and TSS to 
obtain their accuracy and overheads under different 
network and traffic dynamics.   

• We showed that our derived analytical models are 
consistent with simulation results, and can clearly 
explain them.   

• We combine the simulation results and the analytical 
models to provide a thorough evaluation and comparison 
between TPSN and TSS. Specifically, the analytical 
models decompose synchronization error into 
comparable individual error components. Then we 
identify and quantify the impact of different network and 
traffic dynamic factors on these individual error 
components.  

• Finally, we derive a selection guideline showing how to 
choose the better time synchronization mechanism given 
different network dynamics, traffic dynamics, and 
application requirements.  

The remainder of this paper is organized as follows. Section II 
presents the background of time synchronization for wireless 
ad-hoc networks. Section III describes the protocol mechanisms 
of TPSN and TSS, and develops analytical models of their 
accuracy and overheads. Section IV explains the simulation setup 
and shows the simulation results. Section V discusses the 
selection guideline derived from the simulation results and draws 
our conclusion. 

II. BACKGROUND 
Time synchronization mechanisms for wireless sensor 

network can be categorized into two general classes – clock 
synchronization and event synchronization. In the clock 
synchronization, several promising algorithms were recently 
proposed. For examples, Elson et al. proposed the 
Reference-Broadcast Synchronization (RBS) [10]. For RBS, 
within a one-hop neighborhood, a beacon node is selected to 
periodically broadcast a reference beacon to all its one-hop 
neighbor nodes. When the neighbor nodes receive this beacon, 
they exchange their beacon arrival timestamps according to their 
local clocks. Since all one-hop neighbor nodes are likely to 
receive the same beacon around the same time, each neighbor 
node can then estimate the clock offset between its local clock and 
any one of its one-hop neighbor node’s local clocks, by simply 
taking the difference between its beacon arrival timestamp and its 
neighbor node’s beacon arrival timestamp. To extend this 
protocol to a multi-hop network, consider a network divided into 
multiple one-hop clusters. Some nodes bridge adjacent clusters 
i.e., they are within the intersection regions of two or more 
adjacent clusters. These bridge nodes are used to estimate the 
clock offsets among nodes residing in adjacent clusters. Based on 
experiments with Berkeley Motes, the RBS authors reported an 
average synchronization error of 11 µs (using 30 reference 
broadcasts) between one-hop neighbors, and the error grows 
O( n ) between nodes that are n hops away. 

Moroti et al. proposed the Flooding Time-Synchronization 
Protocol (FTSP) [11]. Basically in FTSP a leader node is selected 
in the sensor network. The leader node’s clock is used as the 
global reference clock. To synchronize other nodes’ clocks to the 
reference clock, the leader node periodically floods the entire 
sensor network with a sync message containing its current time. 
When a node receives a sync message, it records the leader’s 
reference time and the arrival time. Then it floods this sync 
message to its one-hop neighbors. Since a node can receive the 
same sync message multiple times, i.e., one from each of its 
one-hop neighbors, it can estimate its clock offset and rate 
difference from the leader node. Based on experiments with the 
8x8 grid of Berkeley Motes, the FTSP authors reported an 
average synchronization error of 11.7 µs over 10 minutes. 

Ganeriwal et al. proposed the Timing-sync Protocol for 
Sensor Networks (TPSN) [8]. TPSN is based on a spanning tree 
structure that connects all the nodes in the network. TPSN first 
selects a node to be the root of this spanning tree. This root node 
periodically broadcasts a sync-request message to its immediate 
child nodes in the spanning tree (first level nodes). After the root 
node completes pair-wise synchronization with the first level 
nodes, the second round of pair-wise synchronization begins 
between the first level nodes and their immediate child nodes 
(level nodes). The round of pair-wise synchronization continues 
down the spanning tree until all nodes are synchronized. Based on 
experiments with two adjacent Berkeley Motes, the TPSN 
authors have reported an average synchronization error of 16.9 
µs.  
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These three clock-sync methods all show a low average 
synchronization error. We choose TPSN as the representative of 
the clock-sync class for two reasons: (1) TPSN is more recent, 
and (2) the authors of TPSN claim that TPSN can achieve double 
the precision of RBS. We did not choose FTSP because of its 
flooding mechanism. In a large sensor network, flooding 
generates heavy overhead. In addition, given the similarity 
between FTSP and TPSN in adjusting the clock, we believe they 
have similar accuracy.  

Time-stamp synchronization (TSS) [9] by Römer suggests 
that instead of synchronizing every node's clock to a global time, 
one could obtain the event generation time by estimating and 
accumulating its hop-by-hop delay.  This mechanism determines 
the event timing relative to the sink’s clock, a function that a clock 
synchronization mechanism can also provide. We choose 
Romer’s mechanism for comparison because it is the only event 
synchronization mechanism identified in the literature. 

III. MECHANISMS AND ANALYTICAL MODELS 
We describe protocol mechanisms of TPSN and TSS, and 

develop their analytical models on performances.  

A. TPSN (Clock-sync) Protocol Mechanism  
TPSN [8] has two phases in its process: “level discovery” and 

“synchronization”. A hierarchical structure with a root node is 
first created in level discovery phase. Then in synchronization 
phase, nodes synchronize their clocks to the root node’s clock 
using the hierarchical structure constructed earlier. 

(a) Level Discovery Phase: This phase of TPSN happens at 
the beginning, after the network has been setup. To start, the root 
node assigns itself a level 0 and broadcasts a level_discovery 
packet. This packet holds the node identity and the level number 
of the root node. When its neighbors receive this packet, they 
assign themselves a greater level number than received in the 
packet, say level 1. Then they continue to broadcast 
level_discovery packets with their own node identity and level 
number. This process lasts until every node in the network is 
assigned a level number.  Once a node is assigned a level, it 
ignores any other level_discovery packets that are received 
afterwards. This ensures that flooding does not congest the 
network. At the end of this phase, a hierarchical structure with a 
root node is created for use in the next phase. 

(b) Synchronization Phase: The root node starts this phase by 
broadcasting a time_sync packet.  Upon its reception, the nodes 
on level 1 wait for a random time then send a 
synchronization_pulse packet to the root node. The randomized 
waiting prevents collisions caused by contention for media 
access. The root node replies accordingly with acknowledgement 
packets. Therefore, all nodes belonging to level 1 can correct their 
clocks according to the clock of the root node. In addition, the 
nodes on level 2 will overhear the two-way message exchange 

because they have at least a neighbor on level 1. Consequently, 
the nodes on level 2 will each send a synchronization_pulse 
packet to their level-1 neighbors for synchronization. This is 
applied recursively with nodes on level i synchronizing their 
clocks to nodes on level i-1. Eventually, every node in the 
network has its clock synchronized to the reference clock of the 
root node, thus, the global clock synchronization is achieved. 

But, exactly how are these synchronizations of levels 
completed? In this phase, pair-wise synchronization is achieved 
across the edges of the hierarchical structure built in the previous 
phase. We first consider how to synchronize a pair of nodes 
through a two-way message exchange. As depicted in Fig. 1, 
there are two nodes called Ni and Ni-1. t1 and t4 are the times 
measured according to node Ni’s local clock; t2 and t3 are the 
times measured according to node Ni-1’s clock. At time t1, node Ni 
sends a synchronization_pulse packet to node Ni-1. The 
synchronization_pulse packet holds the level number of node Ni 
and the value of t1. Node Ni-1 receives this packet at t2, where t2 is 
equal to (t1 + ∆ + d). ∆ represents the clock drift between the two 
nodes, and d represents the sending delay (including the time to 
send, propagate, and receive the packet).  At time t3, node Ni-1 
sends back an acknowledgement packet to node Ni. This 
acknowledgement packet holds the level number of node Ni-1 and 
the values of t1, t2, and t3, and node Ni receives the packet at t4. 
TPSN assumes the delays of synchronization_pulse packet and 
acknowledgement packet are the same, so t4 is equal to (t3 - ∆ + 
d). Assuming that the clock drift and the propagation delay do not 
change in this small period of time, node Ni can calculate the 
clock drift and propagation delay using the following formula:  

2
)()(;

2
)()( 34123412 ttttdtttt −+−

=
−−−

=∆      (1) 

Node Ni can therefore synchronize its local clock to Ni-1’s 
since it has information about the clock drift between them. 

 
Figure 1. Pair-wise Synchronization of TPSN. t2 and t3 are measured in node 

Ni-1’s clock, and t1 and t4 are measured in node Ni’s clock.  

 

B. TPSN Analytical Models 
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We analyze the synchronization error in TPSN, and develop 
its analytical model. As shown in Fig. 2, the TPSN 
synchronization error is composed of three error components: 
pair-wise synchronization error (Esync) caused by the delay 
estimation when a parent node is exchanging the global clock 
value with its one-hop child nodes, external clock skew error 
(Eext) caused by clock skews of intermediate nodes on the 
transmission path while they are forwarding the synchronization 
message from the root node and the target node, and internal 
clock drift error (Eint) caused by clock skew of the target node as 
its local clock drifts away from the most recent synchronization 
time point: 

E 
tpsn

 = Esync + Eext + Eint (2) 

The pair-wise synchronization error (Esync) comes from 
TPSN’s assumption that sending delay of synchronization_pulse 
packet and that of acknowledgement packet are the same. 
However, in real deployment, the forward and reverse link delays 
can be asymmetric. This leads to incorrect calculation of the 
clock drift value, i.e., ∆ in Equation (1). Denote the average time 
difference between the forward link delay and reverse link delay 
as u. At the end of each pair-wise synchronization (i.e., t4 in Fig. 
1), the asymmetric link delay will cause the clocks between the 
parent and child nodes to be off by u/2 (on average). Consider a 
target node at level l, since there are l number of such pair-wise 
synchronizations occurred between pairs of intermediate nodes 
on the path between the root node and the target node, the total 
synchronization error is the sum of all pair-wise synchronization 
errors on that path. It can be written as follows. 

2
ulEsync
⋅

=  (3) 

The external clock skew error (Eext) is caused by clock skews 
of intermediate nodes as the sync message (containing the global 
clock) is pushed from the root node down the hierarchy to target 
nodes. Since each pair-wise synchronization takes some amount 

of processing and transmission time, this hop latency needs to be 
accounted for by each intermediate node using its local clock, 
added to the global clock, and then passed it down the hierarchy. 
This clock skew error is external in the sense that the error is not 
contributed by the target node, but rather clock skews from these 
external intermediate nodes. Denote the average clock skew (i.e., 
clock drift rate) on any non-root nodes as r. Denote the average 
hop latency time for a pair-wise synchronization as d. At the end 
of each pair-wise synchronization (i.e., t4 in Fig. 1), clock skew 
will cause the clock on an intermediate node to drift apart on 
average by (d* r) from the global clock. Consider a node on level 
l, since there are l number of pair-wise synchronizations occurred 
on the path between the root node and the target node, the external 
clock skew error is the sum of clock skews on that path. 

rdlEext ⋅⋅=  (4) 

The internal clock drift error (Eint) is caused by the drift of the 
clock on the target node between the current time and the most 
recent synchronization time point. This clock drift error is called 
internal in the sense that the error is contributed solely by the 
target node’s local clock. Denote this synchronization time 
interval as T. If the data generation time occurs uniformly over 
this time interval, the average amount of clock drift away from 
the global clock (since the last synchronization time point) can be 
derived as follows. 

2int
TrE ⋅

=   (5) 

The aggregate synchronization error for TPSN (Etpsn) is the 
sum of these three error components. Combining Equations (3), 
(4), and (5) gives the following equation for Etpsn. 

2
)

2
( TrdrulEtpsn ⋅

+⋅+=  (6) 
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Figure 2. TPSN synchronization error decomposed into three error components 
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C. TSS (Event-sync) Mechanism   
Rather than synchronizing every node's clock to a global 

clock, TSS [9] estimates and accumulates the hop-by-hop latency. 
When a data packet arrives at the sink, the packet generation time 
relative to the sink’s clock can be traced back from the 
accumulated end-to-end latency. TSS then determines the 
relative data generation time to the sink’s clock. Wireless links 
among the nodes are assumed to employ a CSMA/CA-like 
MAC-layer mechanism where an acknowledgement is sent for 
each data to assure the reception of the data packet. The hop 
latency, d, can be estimated using the following formula.  

         (7) 
1

)()( 2314 ACKDEstttttd −−−−=

As depicted in Fig. 3, t4 - t1 can be obtained using the 
receiver’s clock and t3 – t2 from the sender’s clock.  The value of 
t3 – t2 can be piggybacked on the Data2 packet to the receiver. 

 is the estimation of the delay of ACK1. We can use the 
transmission delay to estimate this value, as in (8). This 
estimation ignores some CPU processing time and the 
propagation delay. 

1ACKDEst

 
bandwidth

sizepacketACKEst
ACKD

__1
1
=  (8) 

With the above information, the hop latency d of Data2 at the 
receiver node can be calculated. Immediately, the latency can be 
accumulated and carried along with the data packet. To estimate 
the hop latency, each node needs to keep two extra states: the 
ACK departure time and the ACK arrival time of the latest data 
packet. When a data packet is ready to be sent but cannot find the 
state information to be piggybacked, e.g. the first flow of packets, 
an additional overhead will be sent in order to set up the state 
information. 

D. TSS Analytical Models 
We analyze the synchronization error in TSS and develop its 

analytical model. The analytical model is similar to that of TPSN, 
composing of three components shown in Fig. 4: pair-wise 
synchronization error (Esync) caused by the delay estimation on its 
transmission path, external clock skew error (Eext) caused by 
clock skews of intermediate nodes while they are forwarding 
data packets from the source node and the sink node, and 
internal clock drift error (Eint) caused by the clock skew of the 
target node as its local clock drifts between the arrival time of a 
packet and the arrival time of its subsequent packet carrying its 
end-to-end delay. 

Etss = Esync + Eexternal + Einternal  (9) 

The pair-wise synchronization error comes from hop delay 
estimation in TSS. TSS assumes that the ACK packet 
transmission time (t2-t1 in Fig. 3) can be estimated according to 
Equation (8). However, in real deployment, other small delay 
factors such as the protocol processing time are not considered. 
As a result, TSS has the delay estimation error. Denote the 
average delay estimation error as u. Consider a data packet with a 
path-length of l between a source node and a sink node. Since 
there are l numbers of such forwarding hops, the total pair-wise 
synchronization error is the sum of all pair-wise synchronization 
errors on that path. It can be written as follows. 
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Data1 

Node i+1 

Node i-1 

Node i 

t4

t2

t1

t3

Figure 3. Event- Synchronization of TSS. ACK1 departs at t1 and arrives 
at t2. Data2 arrives at the sender at t3, and arrives at the receiver at t4. d is 

the hop latency of Data2 at the sender. 

Target node 
receiving 

data1 packet

Source node 
sending data1 

packet 

Esync: one-way delay estimation error 

Time 

Eext: clock drifts due to clock skews in 
intermediate nodes’ clocks 

Intermediate 
nodes receiving 

data1 packet 

Target node 
receiving 

data2 packet 

Eint: clock drifts due data packet 
interarrival time at the target node 

P 

u 

d 

u 

d 

u

d 

Figure 4. TSS synchronization error decomposed into three error components 
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ulEsync ⋅=   (10) 

The external clock skew error (Eext) is caused by clock skews 
of intermediate nodes as the data packet is forwarded from a 
source node to a sink node, and its per-hop delays are 
accumulated in the subsequent data packet. Denote the average 
per-hop delay time as d. At the end of each hop transmission, 
clock skew will cause the clock of an intermediate node to drift 
apart on average by (d*r) from the global clock. Consider a data 
path of length l. The total external clock skew error is the sum of 
individual clock skew error over these l intermediate nodes. It 
can be written as follows. 

rdlEext ⋅⋅=  (11) 

The internal clock drift error (Eint) is caused by the clock drift 
of the sink node between the arrival time of a data packet (e.g., 
data2 packet) and the arrival time of the previous data packet 
(e.g., data1 packet) carrying the accumulative hop-by-hop delay 
of the previous packet (e.g., data1 packet). This clock drift error 
is internal in the sense that the error is contributed solely by the 
sink node’s local clock. Denote the average inter-arrival time of 
a packet stream as P. The amount of clock drift from the packet 
inter-arrival times can be derived as follows. 

PrE ⋅=int   (12) 

The aggregate synchronization error for TSS (Etss) is the sum 
of these three error components. Combining Equations (10), (11), 
and (12) gives the following equation for Etss. 

PrdrulEtss ⋅+⋅+= )(   (13) 

E. Comparison of Analytical Models of TPSN and TSS 
In the analytical models of TPSN and TSS, we have found 

that they both have three identical error components. The first one 
is the protocol-specific hop delay estimation error (Esync). In 
TPSN, this comes from the asymmetry of packet exchange 
between two nodes. In TSS, this is the propagation delay of an 
acknowledgement packet.  

The second component is the clock skews (Eext) over the 
end-to-end delay. When the sync message propagates through the 
network, the time that this information stays on each intermediate 
node would contribute some errors from the clock skews. In TSS, 
this is the end-to-end delay of each data packet from a source 
node to a sink node. In TPSN, it is the end-to-end delay of each 
sync message from the root node to a target node. 

The third component is the amount of local clock drift (Eint) 
over the last synchronization point. In TPSN, synchronization is 
done periodically, so the amount of local clock drift is 
proportional to how fast the network is resynchronized. 
Interestingly, this error also shows up in TSS. Because the clocks 
in TSS are synchronized by the acknowledgement packets, there 
are also time intervals between the times when the clocks are 
synchronized and when the local clocks are being used. If the 

source nodes send data packets in a constant rate, this time 
interval will basically be the interval of sending data.  

IV. SIMULATION 
TPSN and TSS were implemented on the ns-2 simulator [12]. 

We describe the details for the simulation setup, evaluation 
metrics (error and overhead), and evaluation variables (network 
size, node mobility level, and traffic volume). Based on the 
analytical models derived in Section III, we analyze the impacts 
of changing these evaluation variables on the evaluation metrics. 
We also verified the analytical model by the simulation results. 

A. Simulation Setup 
In all simulations, the sensor nodes are placed on a predefined 

grid in a uniformly random fashion. The data sink is fixed in one 
corner of the grid, while other nodes are randomly chosen as data 
sources. The communication range of all nodes is set to be 40 
meters. Each node has a constant clock skew rate selected from 
0.5*10-6 to 1.5*10-6. Other setup aspects include directed 
diffusion [13], a well-known data-centric routing mechanism, and 
IEEE 802.11, a popular wireless link technology. The simulation 
time is 400 seconds. The data used are restricted to those 
collected after 100 seconds simulation time. This avoids taking 
the start-up time instability into the simulation results. 

For all of the evaluation parameters, the base case is defined 
to have 40 nodes on an 80x80m2 grid, and 10 of these sensor 
nodes are data sources. Each source sends a 100 bytes data packet 
every 5 seconds. Unless specified otherwise, these are the default 
values for the parameters. 

An uncertain CPU processing delay before transmitting 
time-sync messages contributes errors in TPSN and TSS. We 
however do not to simulate this uncertainty in the simulations 
for two reasons: (1) the uncertainty is hardware dependent, and 
there is no model proposed yet to simulate it in a simulator; and 
(2) omitting CPU processing time is applied to both TPSN and 
TSS, making it a fair comparison. Omission of CPU processing 
delay makes the forward and reverses link delay in TPSN 
perfectly symmetric. In addition, it also reduces the hop-delay 
estimation error in TSS. 

B. Evaluation Metrics 
In order to evaluate the performance of event synchronization 

and clock synchronization, the following two metrics are 
investigated: 

• Synchronization Error: This represents the difference 
between actual data generation time and estimated data 
generation time. The correctness of the estimated data 
generation time is important, because it is used to infer 
temporal relation and order of detected events. Inaccurate 
temporal information can cause incorrect application 
semantics. 

• Overhead: This represents the traffic produced due to the 
synchronization mechanisms in proportion to the total 
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data traffic. Lower synchronization overhead implies 
higher throughput and efficiency of the network.  

C. Evaluation Variables 
To compare the error and overhead of the two time 

synchronization mechanisms, scenarios are simulated with 
varying network sizes, node mobility levels, and data rates.  

• Network Size: To vary the network sizes, the number of 
nodes is changed from 20 to 140 with incremental steps 
of 20 nodes. In order to fix the network density with 
increasing number of nodes, the grid size is varied 
accordingly. 

• Node Mobility: In the node mobility model, each node 
has a randomly generated target location and moves to 
that location with a random speed (maximum speed 
10m/s). To change the levels of node mobility, the pause 
time between the target locations is adjusted from 0 to 
400 seconds. A smaller pause time means higher 
mobility. 

• Data Rates: To vary the data rates, we adjust the packet 
sending rates at the source nodes, from a fixed-size 
packet every 4 (22) seconds to every 0.015625 (2-6) 
second. A higher data rate means a higher traffic volume.  

D. Simulation Results 
We report our simulation results in the order of evaluation 

variables listed above: (1) the effects of varying network sizes on 
accuracy and overhead of the clock sync (TPSN) and event sync 
(TSS) mechanisms, (2) the effects of varying node mobility 
levels, and (3) the effects of varying data rates. For each 
simulation scenario, we generate ten random cases, in which each 
case represents a different network topology and pairs of 
source-sink nodes. The synchronization error and overhead are 
obtained by running both the clock-sync (TPSN) and event-sync 
(TSS) on the same ten random cases per scenario. Each data point 
in the simulation results shows the average values of these ten 
random cases in each scenario. 

To verify that the analytical model (described in Section III) 
is consistent with the simulation result, we check how well the 
actual synchronization error measured from the simulation 
matches with the expected synchronization error derived from our 
analytical models. If they match well, simulation results validate 
our analytical models. In order to compute the expected 
synchronization error from the analytical models, it requires 
plugging in the correct values for parameters (u, l, P, T, and d) in 
Equations (6) & (13). The correct values for these parameters: u 
(the average hop delay estimation error) and r (the average clock 
skew rate) can be obtained directly from the network topology 
and traffic volume settings in our simulation scenarios. The 
correct values for the parameters: l (the average node level in 
TPSN or the average path length in TSS), d (the average elapsed 
time for pair-wise synchronization), T (the synchronization 
period in TPSN), and P (the average packet inter-arrival time in 
TSS) can be observed during simulation. For example, to 

compute TPSN’s Eext, the values for l and d are collected during 
the simulation, and then multiplied with r (set to be 10-6) to 
compute Eext. Then, we can plug-in these parametric values into 
the analytical models to compute three individual error 
components Esync, Eint, and Eext. Furthermore, we can sum these 
three error components to compute expected overall errors Etpsn’ 
and Etss’.  

Fig. 5 shows the synchronization error decomposed into three 
individual error components for the TPSN and TSS under 
different network sizes, node mobility levels, and data rates. Each 
plot contains the following five lines:  

• Line (1) shows the actual simulation results of Etpsn and 
Etss; 

• Lines (2-4) show the expected Esync, Eext and Eint obtained 
by applying the simulation’s values to Equations (3) ~ (5) 
and (10) ~ (12) in the analytical models; and 

• Line (5) shows the expected synchronization errors Etpsn’ 
and Etss’ as the sums of the above three error components. 
Note that they are expected values different from the 
actual values (Etpsn and Etss) measured in the simulation. 

By observing the similar trends and magnitudes between lines 
(1) and (5) in Fig. 5, we can check if the analytical models are 
consistent with the simulation results for both TPSN and TSS. 
Note that there will be small discrepancies between these two 
lines because Etpsn’ and Etss’ are the expected synchronization 
error computed from analytical model, whereas Etpsn and Etss are 
the actual synchronization error from simulation. 

1) Impact of network size on accuracy & overhead 
Fig. 5(a) shows the synchronization error of TPSN under 

different network sizes. The actual synchronization error from 
the simulation is shown as line (1), and it exhibits a growing 
trend as the network size increases. This is expected given that a 
larger network size implies a higher level of the clock 
synchronization hierarchy, therefore, lengthens the path for a 
sync message to travel from the root node to a target node. The 
expected synchronization error derived from the analytical 
model is shown as line (5), and it also exhibits the same growing 
trend as the actual synchronization error from the simulation. 
Close similarity between lines (1) and (5) shows that simulation 
results are consistent with our TPSN analytical model. To gain 
better understanding on how network size affects TPSN’s 
synchronization error, we analyze the changes in these three 
error components (Esync, Eext and Eint) under different network 
sizes. Esync is shown as line (2) in Fig. 5(a). It is a zero line for 
reasons given at Section IV-A: i.e., the simulator is configured 
such that the forward link delay and the reverse link delay are 
perfectly symmetric, making (u=0). Eext is shown as line (3) in 
Fig. 5(a). It also exhibits a growing trend with increasing 
network size. This is in accordance with Equation (4) -- since a 
larger network size increases the depth of TPSN tree hierarchy 
(l), this also leads to higher Eext. Eint is shown as line (4) in Fig. 
5(a). It too exhibits a growing trend with increasing network 
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size. This is somehow unexpected by our analytical models. 
Given that the clock skew rate (r) and synchronization period 
(T) are fixed in the simulation setup, Equation (5) says that Eint 
should not change with increasing network size. After analyzing 
the simulation results, we have found an interesting relation 
between the network size and the synchronization period (T). 
This relation provides an explanation for the growing Eint. This 
relation can be explained as follows: (1) a larger network 
increases the average synchronization path length between the 
root node and other nodes down the hierarchy, (2) a longer path 
length leads to a higher probability of lost sync messages on that 
path, and (3) missing sync messages has the same effect as 
increasing the synchronization period (T). Given the presence of 
this relation, we can derive the adjusted synchronization period 
(T’) as a function of the message lost probability p (which is a 
function of the hierarchy level l) and original synchronization 
period (T):  

T
lp

T
))(1(

1'
−

∝  (14) 

Fig. 5(b) shows the synchronization errors of TSS under 
different network sizes. The actual synchronization error from 
the simulation, shown as line (1), matches well with the model’s 
expected synchronized error, shown as line (5). In other words, 
simulation results are consistent with our TSS analytical model. 
Next, we analyze the changes in three error components (Esync, 
Eext and Eint) under different network sizes. Esync and Eext shown 
as lines (2) and (3) exhibit a growing trend, while Eint shown as 
line (4) is flat. This is in accordance with Equations (10) and 
(11), which say that Esync and Eext are affected by the length of 
data path from the source node to the sink node (l), which grows 
with increasing network sizes. On the other hand, Eint is not 
affected by the changing network sizes, because the network size 
has no effect on any factors in Equation (12). Although both 
Esync and Eext grow with increasing network size, their scales (< 
0.1 microsecond) are one order of magnitude smaller than Eint 
(2~3 microseconds). As a result, the overall TSS error is 
dominated by the flat Eint. 

Fig. 6(a) shows the protocol overhead ratios of TSS and 
TPSN under different network sizes. The overhead ratio is 
defined as the ratio between the amount of protocol overhead 
and the amount of data payload transfer. The overhead ratio of 
TSS increases only slightly with increasing network size, 
because TSS needs additional state establishment packets with 
longer data path. On the other hand, the overhead ratio of TPSN 
increases more dramatically than that of TSS. As the network 
size increases, the amount of synchronization packets in TPSN 
increases more rapidly than the amount of data packets. 

Simulation results and analytical models have shown that 
TSS has smaller synchronization error, lower protocol overhead, 
and better scalability than TPSN under increasing network size. 

2) Impact of node mobility on accuracy & overhead  
Fig. 5(c) shows the synchronization error of TPSN under 

different node mobility levels. Node mobility levels are adjusted 
by changing the amount of pause time (from 0 ~ 400 seconds) in 
the simulation. The actual synchronization error from 
simulation, shown as line (1), exhibits a growing trend as node 
mobility level increases. This is expected given that higher node 
mobility brings about more rapid change in the TPSN 
synchronization hierarchy. Before a new hierarchy is 
re-discovered by the mobile nodes that have moved away from 
their old neighbor nodes, they may not receive any 
synchronization messages. As a result, their local clocks may 
continue to drift out-of-sync. Next, we apply the analytical 
models to help explain the effects of different node mobility 
levels on TPSN’s synchronization error. We decompose the 
overall synchronization error into three error components (Esync, 
Eext and Eint) shown in Fig. 5(c). For the reason given at the end 
of Section IV-A, Esync , shown as line (1), is a zero line. Eext 
shown as line (3) exhibits a relatively flat line. This is expected 
given that a higher level of node mobility does not change the 
size of the synchronization hierarchy l. Eint shown as line (4) 
exhibits a growing trend with increasing levels of node mobility. 
This is also expected given the following reasoning: higher node 
mobility implies higher probability of broken hierarchy, which 
in turn leads to higher probability that nodes may fail to be 
synchronized with upper level nodes. This has the same effect as 
raising the average synchronization time interval T, causing 
higher synchronization error. An interesting phenomenon in 
TPSN is that when the node mobility level moves to the high 
end of the extreme (pause times = 50~0 seconds), the 
synchronization error actually falls. This phenomenon can be 
explained as follows: since high mobility enables the root node 
to encounter more one-hop neighbor nodes over the course of its 
movements (high mobility in non-root nodes also increases the 
probability that they will encounter the root node); therefore, 
mobility helps to spread the root node’s global clock to a larger 
number of level-1 neighbor nodes. This is an example where 
mobility can sometimes be a positive factor. 

Fig. 5(d) shows the synchronization error of TSS under 
different node mobility levels. The actual synchronization error 
from simulation is shown as line (1). It exhibits a two-step 
behavior – a flat line under low node mobility, but changes to a 
steep line under high node mobility. This two-step behavior can 
be explained by decomposing the overall synchronization into 
three error components (Esync, Eext and Eint) and analyzing them. 
Esync shown as line (2), exhibits a decreasing trend with 
increasing node mobility levels. The reason is the restriction on 
the routing mechanism – when the network is dynamic under 
high node mobility, data is more likely to be dropped before 
reaching the sink node. Therefore, the average data path length 
(counting dropped packets) will decrease. Simulation results 
confirm this observation. Eext shown as line (3), exhibits a slight 
growing trend with increasing node mobility. This is in 
accordance with Equation (11), which says that the positive 
factor influencing Eext is the hop delay (d). The increase of Eext is 
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Fig. 5. Graphs in (a), (c), and (e) represents synchronization errors for TPSN under the following dynamic factors: different network sizes, node mobility 
levels, and data rates. Graphs in (b), (d), and (f) represents synchronization errors for TSS under these dynamics factors 

 

(d)

(f)

(b)(a) 

(c) 

(e) 



 

mainly due to a larger d induced in a dynamic network. This is 
due to data packets spending more time waiting on intermediate 
nodes that are searching for the next hop to forward the data 
packets. Simulation results confirm this observation. In addition 
it shows that the effect of a larger d, which raises Eext, dominates 
the effect of shorter l, which lowers Eext. As a result, Eext exhibits 
a growing trend. Eint also exhibits a growing trend with 
increasing node mobility. This growth is mainly due to a larger 
data packet inter-arrival time (P). The rise in packet inter-arrival 
time is caused by frequent switching of routing paths. Switching 
of routing paths is a result of intermediate nodes repeatedly 
moving in and out of routing paths, making use of previously 
established time-sync states on nodes. Since Eint is the dominant 
factor, the overall sync error exhibits the growing trend,  

Fig. 6(b) shows the protocol overhead ratios of TSS and 

TPSN under different levels of node mobility. Since higher node 
mobility results in higher frequency of topology changes, extra 
packets are sent to reconstruct the new TPSN hierarchy. As a 
result, the protocol overhead is raised. In contrast, TSS does not 
maintain any synchronization hierarchy. TSS has to re-establish 
time-sync states on the new routing paths when intermediate 
nodes move out of the routing paths. However, the amount of 
overhead increased in TSS is not as significant as TPSN. 

Simulation results and analytical models have shown that TSS 
has smaller synchronization error and lower protocol overhead 
than TPSN under increasing network dynamics. Although TSS 
has smaller synchronization error than TPSN, TSS’s 
synchronization error grows steeper than TPSN under high node 
mobility, making TSS less scalable than TPSN. 

Figure 6. Protocol overhead of TPSN and TSS. 

(b)(a) 

(c) 
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3) Impact of data rates on accuracy & overhead 
Fig. 5(e) shows the synchronization error of TPSN under 

different data rates. Data rates are adjusted by changing the data 
packet sending rates at source nodes. The actual synchronization 
error from the simulation, shown as line (1), exhibits a two-step 
behavior. These two steps can be explained as follows. High 
traffic volume eventually leads to network congestion and packet 
loss. In the simulation scenario, this congestion point is the point 
connecting these two steps (i.e., the packet sending interval is 
approximately 2-3 second). If the lost packets contain sync 
messages, nodes will miss synchronization rounds. Missing 
synchronization rounds has the same effect as increasing the 
sync period (T). Equation (6) says that increasing T leads to 
higher synchronization error. Next, we decompose the overall 
synchronization error into three error components (Esync, Eext and 
Eint) shown in Fig. 5(e). Again Esync is a zero line for the reason 
given at the end of Section IV-A. Eext is shown as line (3), and it 
exhibits a growing trend when data rates go beyond the 
congestion point. This is reasonable because network congestion 
lengthens the media access time and the packet hop delay (d). Eint 
is shown as line (4), and it also exhibits the growing trend after 
the congestion point. The reason has already been given above – 
congestion induces dropped packets and lost synchronization 
messages, which can be translated into increase of the 
synchronization period (T).  

Fig. 5(f) shows the synchronization error of TSS under 
different data rates. Interestingly, the actual synchronization 
error exhibits a decreasing trend before the congestion point, and 
remains flat after the congestion point. We can explain this 
two-step behavior from the analytical models and by 
decomposing the overall synchronization error into three error 
components (Esync, Eext and Eint). Esync is shown as line (2), and it 
is flat because the data path length does not change with 
increasing data rates. Eext is shown as line (3), and it also 
remains flat before the congestion point, but grows after the 
congestion point. We can explain this two-step behavior by 
looking at Equation (11) and in combination with the fact that 
network congestion increases the queue length and the hop delay 
(d). Eint is shown as line (3), and it exhibits a downward trend. 
This can be explained by looking at Equation (12) – a high data 
rate means a small packet sending interval, and this leads to a 
shorter packet inter-arrival time (P) at the sink node! When data 
rates are low with no congestion, Eint falls linearly because the 
amount of decrease in P is linear to the data sending interval. 
However, when data rates are high with congestion presence, P 
does not hold a linear relation with the data sending interval, 
because network congestion can slow down the actual data 
receiving rate. Therefore, Eint decreases at a slower rate. The 
overall synchronization error in TSS drops under low data rates 
because Eint dominates the overall error. This explains the 
downward trend for the first step in Etss. However, under high 
data rates, Eint is small and Eext becomes the dominant factor in 
Etss. This explains the slight-upward trend in the second step of 
Etss. 

Fig. 6(c) shows the protocol overhead ratios of TSS and 

TPSN under different data rates. Since TPSN exchanges 
synchronization messages at a fixed time interval independent of 
data traffic volume, the overhead ratio will fall as the data rate 
increases. However, it will stop dropping when data rates 
increases beyond the congestion point. In comparison, TSS 
exhibits a flat line because the protocol overhead is piggybacked 
on the data packet, fixing its protocol overhead ratio.   

Although TSS has a smaller synchronization error than 
TPSN, TPSN has a significantly lower overhead under high data 
rates. 

V. SUMMARY AND SELECTION GUIDELINE 
In conclusion, we achieve in (1) modeling the average error of 

two time synchronization mechanisms, TPSN and TSS, (2) 
validating the analytical models with thorough simulations, (3) 
identifying that the dominant error component in TPSN is the 
periodicity of synchronization and in TSS is the data rate, and (4) 
deriving the following selection guideline for choosing a suitable 
time synchronization protocol based on the network size, 
mobility level, and data rate. 

(1) When network size is large, TSS is dominantly better both in 
terms of accuracy and overhead. 

(2) When mobility level is high and energy consumption is 
critical, TSS will be the choice.  If energy consumption is 
not critical, the choice should depend on the actual mobility 
level.  TSS appears to be better in the error to reference 
clock.  However, the error of TSS has a steep growing trend.  
When the mobility level goes beyond the parameters used for 
the experiments, the error of TSS could potentially be worse 
than that of TPSN.   

(3) When data rate is high and energy consumption is critical, 
TPSN will be the choice.  If energy consumption is not 
critical, the error of TSS is lower and scales better.  TSS will 
be the choice in this case.  

Although TSS outperforms TPSN in accuracy under most of 
the cases, TSS has a fundamental limitation.  It only 
synchronizes the events’ generation times to the local clock of the 
events’ sink node. Consider the case that there are more than one 
sink nodes in the wireless sensor network. Since the clocks of 
different sink nodes are not synchronized, the generation times of 
events that go to different sink nodes are not synchronized. If the 
application requires events to be labeled using a global reference 
clock, TSS is not applicable. 
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