
Submission to WIAPP 2003 DRAFT & Confidential

Pushing Browser-Based Services to Mobile Users: A Context-Aware
Service Recommender for Smart Environments

Henry Song, Hao-hua Chu, Masaji Katagiri

DoCoMo Communications Laboratories USA, Inc.
181 Metro Dr., Ste. 300, San Jose, CA 95110

{csyus, haochu, katagiri}@docomolabs-usa.com

Abstract

Smart environments, in which ubiquitous comp uting
resources can assist users with their real world tasks,
have recently attracted growing interest. A problem in
smart environments is that the number of services
available to users in these environments is limited.
Meanwhile, large selection of browser-based services
exists on the Internet. However, mobile users in these
smart environments who like to access browser-based
services on the Internet are burdened with information
searching and filtering on mobile devices with small
display size and slow, costly connections. In this paper,
we describe a context-aware service recommender
system that recommends relevant browser-based
services to mobile users in smart environments, and
pushes those services to users’ mobile devices. We
formulate a new <user, context, service> dataset to
represent relevance rating data that are used by the
service recommender to make personalized
recommendation. We present a new class of context-
based collaborative filtering algorithms that
recommend services based on this data.

1 Introduction

Recently, there has been a growing interest in building
smart environments and pervasive computing systems
[3, 4, 9] that can seamlessly integrate our everyday
lives with artifacts of computing and communication
capabilities in our surrounding environment. In order
to provide such seamless user experience, the smart
environment must be able to determine the current user
context: user location, orientation, time of day, etc., and
decide on appropriate actions. In existing smart
environments, these actions are supported by context-

aware services or applications that are built specifically
for each environment. A smart environment system
provides contextual events to the interested context -
aware services that may handle these events.

Because context -aware services are built specifically
for each smart environment, the number of available
services is limited by each environment. However,
there is a much wider selection of environment-
independent browser-based services1 that exist on the
Internet. Users should be able to use these browser-
based services in smart environments as easily as local,
context -aware services. At the same time, service
providers should be able to deploy such global
browser-based services that can be used in any smart
environments without any environment-dependent
customizations.

Because these services are not designed for any
particular smart environment, they lack any notion of
user context in an environment, and conversely, the
smart environment has no notion of the applicability or
usefulness of such a service. In particular, context
events provided by a smart environment are not
handled by global browser-based services. For
example, in a smart grocery store equipped with
sensors, there is no way for a user to incorporate a
web-based consumer report service into the activity of
shopping. The smart environment does not know to
invoke a consumer report search when it senses that a
user has picked up an item, and the consumer report
service has no other way of activating itself.

1 We define browser-based services to be web-based services
whose main communication channel is HTTP and users
interact with them through browsers on client devices.

 Page 2

DRAFT

The ability for services to be found effortlessly, for
services to be pushed to users , rather than for users to
manually search for them, is an important step toward
creating a better user experience of using web-based
services in smart environments, because use of
computing services in everyday tasks must require
minimal effort from users. It would be immensely
inconvenient for users to search for services while
holding a basket of groceries, or while standing in line
at the checkout counter, on a mobile device with a
small display, over a slow wireless network. Therefore,
a push model rather than a pull model is essential in
getting services to mobile users.

To address these issues, we have designed a context-
aware service recommender that can infer triggering
conditions for any browser-based services in smart
environments, and push personalized recommendations
of relevant services to users based on current user
context.

1.1 Scenario

The following scenario further illustrates the
motivation for a context -aware service recommender:

Jane needs to go grocery shopping. Before going to the
store, she prepares a shopping list using a shopping list
service. She then goes to a supermarket that is a smart
environment in which location detection sensors are
installed throughout the store, and all price tags on the
products contain embedded sensors. She brings a
mobile device with her, to access the shopping list and
other services, and to use service recommendation
agent for service recommendation.

The store first detects when Jane enters. This triggers
the recommendation agent to notice that the shopping
list service is relevant to the environment, and that it
can be used together with the store’s local map service
to help Jane find the locations of her needed items.

Jane follows the map on her mobile device to find a
bottle of milk on her shopping list, and picks it up. The
embedded sensor in the price tag on the bottle then
triggers Jane’s agent to recommend two services: a
web consumer report service and a local coupon
service. She selects the consumer report service first.
A consumer report recommending the brand of milk is
then displayed on her mobile device. She then selects

the coupon service to see if there is a store coupon on
this or any other milk. The coupon service does report
a store discount on this item, so she puts the milk into
her cart and continues shopping.

After completing her shopping, Jane goes to an
automatic checkout counter. A scanner at the checkout
counter scans items in her shopping cart and computes
the total price. This triggers the recommendation agent
to recommend the store coupon service and Jane’s
credit card service. Jane uses the coupon service to
receive the store discounts, and her credit card service
to pay the bill.

In this scenario, it is clear that service recommenders
that push browser-based services to users, and consider
context information, can be very helpful in daily tasks.

1.2 Collaborative Filtering

We base our context -aware service recommender on
collaborative filtering, which is the most successful
recommendation technique currently used by e-
comme rce recommender systems. In these systems,
users and items (products) are considered the axes of a
two-dimensional matrix, in which each element of the
matrix is a rating. A collaborative filtering algorithm
fills in empty elements in the matrix with predicted
ratings, and the recommender system recommends the
items with the highest ratings. We describe this
technique here.

Pearson Correlation

Collaborative filtering may use any of several metrics
for determining the correlation between two sets, in a
population of sets. One successful formula is called
Pearson Correlation:

c X ,Y =
xi − x() yi − y()

i

∑

xi − x()2

i

∑ yi − y()2

i

∑

 (1)

In this formula, ix and iy refer to individual,

corresponding values in sets X and Y , and x and y
refer to averages of those sets. In e-commerce
applications of collaborative filtering, each set typically
represents either an individual user, or an individual

 Page 3

DRAFT

item, and the values in each set represent the user’s
ratings of the items.

There are other similar formulas for determining
correlation between two corresponding sets, such as
cosine-based correlation [11], mean-squared difference,
and Spearman correlation. Without the loss of
generality, we use Pearson correlation in the remainder
of the paper.

User-Based Collaborative Filtering

User-based collaborative filtering fills in the unrated
entries in the user-item matrix by first forming a k-
nearest user neighborhood of similar users to the active
user, and predicting a missing rating based on a
weighted average of ratings from the k-nearest user
neighborhood. The weighting assigned to each
neighborhood rating is proportional to the degree of
similarity between the active user and the neighbors.
One such weighted average prediction, given by
Herlocker, et al [7], is as follows:

()
∑

∑

∈

∈

−⋅
+=

Uu
uau

Uu
uaiuuau

auaiau c

rrc
rP

,

,,

,
 (2)

In this formula, u is a user in set U of all users, au is
the active user (the user for whom the formula is filling
in item ratings), ru,ai is the rating given to active item ai
by a user u, ur is the average rating given to all items
by a user, and cau,u is the correlation between two users,
au and u, as given by Equation (1).

Item-Based Collaborative Filtering

Item-based collaborative filtering is another method of
predicting ratings. It forms a k-item neighborhood of
similar items and uses active user’s ratings on item
neighbors to predict ratings on target items. One such
prediction is given by Sarwar, et al [11]:

∑
∑

∈

∈

⋅
=

Ii
iai

Ii
iauiai

aiau c

rc
P

,

,,

,
 (3)

In this formula, i is an item in set I of all items, ai is the
active item (the item for which the formula is filling in
user ratings), cai.i is the correlation between two items

as given by Equation (1), and the rest of the symbols
are the same as above.

1.3 Challenges

Our service recommender is analogous to the product
and media recommender systems employed by
Amazon.com, Netflix, TiVo, and many others –
services are equivalent to items. However, there is one
major difference: user context is an additional
dimension to the matrix that our recommender
algorithms must analyze. Note that our user context is
not the same as past user behavior (e.g., browsing,
purchase, or rating history). Instead, it is about
associating each user behavior with a context that can
be detected by sensors in smart environments. For
example, Amazon.com does not track user context
under which a user makes a purchase, e.g., buying a
technology book at office, or buying a toy at home.
We believe that such user context information can help
to improve the quality and relevance of
recommendations. Amazon.com could recommend
technology-related books when the user were at office,
and toy-related products when the user were at home.

We define the dimension of context to be folded
<environment, event> pairs. That is , every context
event (such as entering a store, arriving at a checkout
counter, picking up a product) in every smart
environment is considered a point of context.
Therefore, the matrix we consider can be visualized as
in Figure 1.

Figure 1: Three-Dimensional <user, context, service>
Matrix

Contexts

Users

Services
ca

cb

 Page 4

DRAFT

This additional dimension allows us to explore similar
contexts, in addition to similar users and services, to
determine predictions on relevant services. For
example, if a user is in the context ca, a service s is
commonly invoked in context cb, and contexts ca and cb
are closely correlated, and then the service s could be
recommended to the user. The basic challenge that this
paper addresses is to provide a class of new algorithms
with the ability to consider this additional dimension
and its semantics.

It has been found that existing recommender systems
may have sparse dataset [7]. Accordingly, qualities of
recommendations in existing recommender systems
that use collaborative filtering algorithms may be poor
due to insufficient numbers of rated entries. We
believe that our context -aware service recommender
may face the same data sparsity problem as existing
recommender systems. We address data sparsity
challenge by including more rated entries from
multiple, similar contexts. For example, Jane may go
to a grocery store that she has never been to before. A
traditional recommender system would have no
information as a basis to recommend services in this
new environment. This problem is referred to as the
cold-start in traditional recommenders. However, by
analyzing similar contexts to find that this store is
similar to the two supermarkets Jane usually visits, our
context -aware recommender system avoids the cold-
start problem and can recommend services similar to
those used in other supermarkets.

1.4 Contributions

We present two contributions in this paper:

• An architecture for context -aware service
recommender systems for smart environments;

• A new class of algorithms, called context-based
algorithms, for use in these recommender systems.

We have not yet deployed our service recommender
system, so we do not yet have a real dataset to evaluate
the quality of our recommendation. In this paper, we
try our best to justify our algorithms by examples and
analogous results from traditional recommender
systems.

2 Modeling the Context-Aware
Service Recommender

We begin by presenting the architecture we use to
model our system in Figure 2. We assume that smart
environments install sensors that can detect user
context and transmit low-level context data to a context
server. All transmission of context information
between components in the architecture uses secure
connections (e.g., SSL) for privacy protection. The
context server in the smart environments translates
sensor data into application-level context events, which
are sent to a user’s mobile device (assumed Internet-
capable). This is a well-accepted architecture [3] which
we extend here. Context events contain, among other
things, the user identity, the type of the event, and the
smart environment identity (e.g., <“Jane”, “Pick up
milk,”, “Supermarket A”>).

Figure 2: Context -Aware Service Recommender

Context events are handled by a service recommender
agent running on the user’s mobile device. The agent is
a thin client for the service recommender. The service
recommender is a browser-based service, accessible
from the Internet. The recommender agent relays the
context events to the service recommender. The
purpose of the service recommender is to recommend

Web Services

 Smart Environment

Sensors

Context Servers
Agent

Context-Aware
Service Recommender

(1) Context Events
(4) Implicit Feedbacks

(1) Context
Events

(2) Service
recommendations

Dataset
Matrix

(3) Select
services

 Page 5

DRAFT

other browser-based services that may be relevant to
the user’s context. The service recommender contains
a service relevance rating dataset (referred to as
dataset or matrix in this document), which is the matrix
of relevance ratings for services used by users in
different contexts, described in Section 1.3.

Once a context event is sent to the service
recommender, the service recommender uses the
context event as input to an algorithm that searches the
dataset for services relevant to that context event (1).
The recommender returns a list composed of a
combination of services that a user has used, and
determined to be relevant in that context before, and
services that have not been used in that context, but
which may be relevant based on information from
similar contexts, users, or services. This appears to a
user as a list of N top-rated services, displayed in the
agent on the mobile device (2). The user may select
any number of recommended services from this list of
services and invoke them (3). The agent monitors
which recommended services are invoked, and which
are not, and relays that information as implicit feedback
to the service recommender (4). The service
recommender uses this feedback to adjust its ratings in
the dataset.

2.1 Ratings and Implicit Feedback

As mentioned before, the dataset used by the service
recommender is a three-dimensional <user, context,
service> matrix. Each point in this matrix is a triple
containing a numeric rating (between 0, for the least
relevant services, and 1, for the most relevant services),
the number of invocations of a service, and the number
of times the service was recommended. We will
denote ratings as R, the number of invocations of a
service as Npositive, and the total number of times a
service is recommended as Ntotal. We derive support of
a rating from Ntotal, meaning how much confidence we
have on a rating. These variables will be used
throughout the paper to determine how we compute
predictions from ratings, and how ratings change over
time. Points in the matrix may also be empty (i.e.
contain no data); an empty data point indicates that a
given user has not used a given service in a given
context.

Unlike existing recommender systems that ask users
for explicit ratings on items, our service recommender

infers ratings from users’ implicit feedback , which is
determined by monitoring whether or not
recommended services are used. Implicit feedback is a
key element of the system’s design: if explicit feedback
on the actual relevance of recommended services were
required from users, the service recommender would
be too intrusive and cumbersome to use in daily tasks.
Therefore, we evaluate the quality of recommendations
and the relevance of services using implicit feedback.
There are two types of implicit feedback in our system:
positive and negative, and they are used as shown in
Table 1.

 Recommended
Services

Non-recommended
Services

Selected Services Positive Positive

Ignored Services Negative (none)

Table 1: Implicit Feedback

Services that are recommended and selected by the
user are given positive feedback, indicating that the
recommendation was correct, and the service is
relevant to the user’s context. Services that are
recommended but ignored by the user are given
negative feedback, with the reasoning that for a
sufficiently small list of recommended services the user
has had the chance to review and ignore each of them.
Services that are not part of the top list of
recommendations, but are explicitly searched for and
used by the user are given positive feedback. Lastly,
no implicit feedback can be inferred from services that
are neither recommended nor used, because the user
has not had the opportunity to review them.

Implicit feedback is created by the recommendation
agent for every context event that triggers the
recommendation of a list of services. The list of
services is partitioned into those receiving positive
feedback and those receiving negative feedback. This
implicit feedback is used by the recommender to
compute new ratings and update existing ratings in the
dataset, to reflect user’s behavior on services in a
context. We have found a number of ways to calculate
a rating from implicit feedback. One such formula is:

≤
−

−+
=

β
ββ

αα

 and ignored, is service if0
> and ignored, is service if

selected is service if)1(

prev

prevprev

prev

R
RR

R
R (4)

 Page 6

DRAFT

In the first part of the formula, ratings are increased
exponentially by weighting the old rating with a factor
of α (0 < α << 1), and adding (1 – α) if the service is
invoked. In the second and the third parts of the
formula, the ratings are decreased linearly by
subtracting a constant β (0 < β << 1) if the service is
not selected. If the rating reaches 0, then it remains at
that level. This formula ensures that positive feedback
results in fast rating increases and negative feedback
results in slow, steady rating decreases.

2.2 Privacy

Like any recommender systems, user privacy is an
important issue. There are three entities involved in
the recommender systems – smart environment
operator(s) , service recommender provider(s), and
users. There are two pieces of information that can be
subject to privacy protection – context events generated
by the smart environment and sent to service
recommender indirectly through the user’s mobile
device, and implicit feedbacks sent from the user’s
mobile device to the service recommender. Since both
context events and feedbacks go through the user’s
mobile device, the user can control whether to share
them with the service recommender. The
recommender agent running on the mobile device uses
a simple permission-based scheme. The user can
choose not to share any implicit feedbacks with the
service recommender. However, given the lack of
feedbacks from the user, the service recommender can
only provide non-personalized popularity-based service
recommendation to the active user. The user can also
choose not to share any contexts from some specified
smart environment with the service recommender.
However, the lack of context disables service
recommender because the context is a necessary input
for the service recommender.

3 Prediction and
Recommendation

In this section, we describe a new class of collaborative
filtering algorithms that are used in the context -aware
service recommender to generate predictions and
recommendations. We call them context-based
collaborative filtering algorithms, and they can provide
personalized service recommendations. The inputs to

the algorithms are the active user and his or her current
context. Based on the inputs, the algorithms predict
ratings for the active user in the current context. The
algorithms then combine the existing ratings (if any)
and the predicted ratings to derive a final prediction.
The algorithms generate the top-N service
recommendation according to final predictions.

Context -based collaborative filtering algorithms
improve on algorithms in traditional recommender
systems by leveraging the additional context dimension
in a number of ways. The context -based algorithms can
use multiple, similar contexts to select better, higher
quality user or service neighborhoods, and use existing
ratings from these neighborhoods to predict ratings in
the current context for the active user. The context -
based algorithms also apply additional weightings to
existing ratings in the dataset from multiple contexts to
compute the predictions. We believe that these
additional weightings are generalizable to any
prediction schemes that derive ratings from implicit
feedback and draw predictions from ratings in multiple
contexts.

We divide the context -based collaborative filtering
algorithms into the following three steps: (1)
computing similarities between contexts, (2) forming
user or service neighborhoods from multiple contexts,
and (3) predicting ratings. The detail of each step is
explained in the Sections 3.1 to 3.3.

3.1 Computing Context Similarities

Context -based algorithms compute context similarities
such that the algorithms can draw predictions from
multiple, similar contexts. To compute similarity
between two contexts, ci and cj, a simple method would
be to apply Pearson correlation between two slices of
the matrix corresponding to these two contexts. Since
the original Pearson correlation works on two vectors
rather than two matrices, we need to transform each
matrix by folding columns or rows in the matrix slice
into a single, long vector. The problem with this
simple method is that the original dataset may be very
sparse, so there may be very few co-rated entries
between two context matrix slices. Co-rated points in
two sets are defined as those corresponding points in
each set that are non-empty. For example, in the sets {a,
-, c, d} and {A, B, -, D}, the co-rated entries are the
first and fourth. Since the accuracy of the Pearson

 Page 7

DRAFT

correlation depends on the number of co-rated entries
between two context matrix slices, sparse matrix
results in inaccurate correlation values. To solve this
problem, we introduce two methods to reduce data
sparsity in the original matrix: service categorization
and user aggregation.

Service Categorization

Individual browser-based services are grouped into
categories, and each service category acquires an
aggregate rating computed as the average of ratings of
services in the category. The result is that the size of
the service dimension is significantly reduced. The
dataset therefore becomes less sparse, and the number
of co-rated entries between contexts increases such that
Pearson correlation may be used successfully. Once
the dataset has been made denser, we can then fold the
context slices into context vectors, and apply the
Pearson correlation.

User Aggregation

All the users’ ratings on a service in a given context are
averaged into an aggregate rating. The intuition is that
when calculating the similarity between two contexts,
it is sufficient to use average users’ ratings on services.
The result is that the original <user, context, service>
matrix is reduced in dimension to a <context, service>
matrix. Again, the density of data in this matrix is
greater, so we can directly apply Pearson correlation to
find the context similarities.

These two methods are complementary to each other,
meaning that they can be applied either together or
separately. If one method does not sufficiently reduce
the data sparsity in the original dataset, the other
method may be applied to the partially-reduced dataset
to further reduce it. Also note that this reduced dataset
is only used to determine similarities between contexts
and is not used in the final computation to predict
missing ratings. This ensures that aggregation, which
explicitly removes personal user preferences and/or
service specifics from the dataset, does not have any
negative effect on the final recommendation quality.

The final result of this step is to generate a context
correlation table, containing the calculated similarities
between every context. The process of reducing the
dataset through service categorization and/or user

aggregation and then computing Pearson correlations
between each context in the reduced dataset is
computationally intensive, so it is done offline at
regular intervals (e.g., once per day). This yields an
acceptably accurate table because context events, smart
environments, and the similarities between them are
relatively static – they are very unlikely to change
significantly between computation intervals.

3.2 Forming User or Service
Neighborhood from Multiple Contexts

Context -based collaborative filtering algorithms have
two approaches to generate predictions for ratings on
services. The first approach is to form a k-nearest user
neighborhood based on ratings from multiple contexts.
The second approach is to form a k-closest service
neighborhood, again based on ratings from multiple
contexts. Rating predictions are then derived from
existing ratings in the user or service neighborhood.
These two approaches are analogous to the user-based
and item-based approaches in traditional recommender
systems (see Section 1.2).

In comparison with traditional recommender systems,
the context -based algorithms are able to select higher
quality user or service neighborhoods by making use of
existing ratings from multiple contexts. High quality
means that neighbors have high similarities or
correlations with the active user or service. However,
we must do additional computation to achieve this. The
process of forming user or service neighborhoods in
context -based collaborative filtering has three steps:
creating a user or service correlation table, determining
eligible users or service, and determining the closest
neighbors.

The first step of creating a user or service correlation
table can be accomplished by folding each two-
dimensional user or service slice of the three-
dimensional matrix into a user or service vector and
applying Pearson correlation on the resultant vectors.
This process is similar to how context correlation is
computed in Section 3.1. The result of this step is to
generate a user or service correlation table that
contains correlations between every pair of users or
services in the dataset. If the dataset is too sparse, it is
possible to aggregate contexts to increase the data
density; however this may result in less-personalized
recommendations. Like the context correlation table,

 Page 8

DRAFT

the user or service correlation table is also computed
offline because users and services are considered
relatively static over time.

Because the collaborative-filtering recommendation
formulas require data which directly pertains to the
target service whose rating is being predicted, our
second step is to determine which users or services are
eligible to participate in the recommendation
calculation:

• A user is eligible if it has a rating on the target
service, in one or more similar contexts;

• A service is eligible if it is rated by the active
user, in one or more similar contexts.

If the user did not have a rating on the target service or
if the service were not rated by the active user, that
user or service would be ineligible to serve as a
neighbor, meaning that it would not be useful in the
final prediction calculation described below in Section
3.3.

After ineligible users or services are eliminated, the
final step is to find the k-nearest eligible neighbor users
or services to the active user or service. We describe
one possible method to find k eligible user or service
neighbors. It selects neighbors from the m-closest
contexts to the current context, based on a lookup in
the context correlation table. Eligibility of neighbors is
determined by restricting similar contexts to these m-
closest contexts. Neighbors are ranked according to
their correlation with the active user or target service,
determined by a lookup in the user or service
correlation table.

Once the neighbors are ranked, the top k neighbors
with highest rankings are selected to form the user or
service neighborhood.

3.3 Calculating Predictions

The last step of the context -based collaborative
filtering algorithms is to predict ratings for the active
user in the current context. The predicted rating is
computed as a weighted average of existing ratings
from similar users, services, or contexts.

The key element in prediction is to assign an
appropriate weight to each user in the k-closest user
neighborhood, to each service in the k-closest service

neighborhood, or to each context in the m-closest
context neighborhood. In addition to weightings used
in existing collaborative filtering [7, 11], the context -
based algorithms have the following considerations:

Support Weighting (wsup): Since ratings are derived
from cumulative, implicit feedbacks we would like to
place more support on ratings that are based on larger
sample sizes than those that are based on smaller
sample sizes. The support of a rating is a function of
the number of feedbacks as discussed in Section 2.1. It
is given by:

 <

=
1

 if total threshold
threshold

total

sup

NN
N

N
w (5)

In this formula, Nthreshold is determined through
experimentation. If the total number of feedbacks in a
context is less than the threshold, the existing rating is
adjusted by the support weighting.

Context Similarity Weighting (wsim): User or service
neighborhoods are selected from multiple contexts.
When we compute prediction on a service for the
active user in the current context using ratings from
user or service neighborhoods, we need to account for
varying context similarities between the current context
and its m-closest context neighborhood from which
ratings are drawn. This weighting is obtained by
looking up in the context correlation table.

Context Significance Weighting (wsig): One issue in
predictions based on multiple contexts is the amount of
trust (significance) on correlations between contexts.
We believe that it may be common for the current
context to have highly similar context neighbors that
are based on very few numbers of co-rated services.
The more data point we have to compare, the more we
can trust that the correlation is the true representative
of the relation between two contexts. We believe that
the accuracy of prediction can be further improved if
we adjust those ratings that are based on too few
samples. The weights to predictions are adjusted
according to a context significance weighting given by:

 <

=
1

 if threshold
thresholdsig

MM
M

M
w (6)

 Page 9

DRAFT

We denote M as the number of co-rated services
between two contexts in the reduced dataset calculated
in 3.1, and Mthreshold is an experimentally determined
threshold. This weighting gives preference to
correlations based on adequate sample size. Because
the context significance weightings are computed from
context correlation table that is pre-computed, we can
pre-compute the context significance weightings and
store them in a context significance table. The
algorithms simply look up the table at runtime.

3.3.1 Prediction based on User
Neighborhood

We will first show how context -based algorithms
compute the prediction from k-nearest user
neighborhood in m-closest contexts. We start with the
original formula given by Equation (2) that has been
shown to perform well in predicting ratings. Then we
modify it with multiple contexts by incorporating the
additional support weighting on each rating, and
context similarity, context significance weightings on
each context in m-closest context neighborhood:

∑
∑

∈∈

∈∈

⋅
=

CcUu

CcUu

casu,

acasau W

WR
P

,

,

,

,,
 (7),

where
),(),(),,),(cacsigcacsimcassup(uuausim wwwwW ⋅⋅⋅=

We denote Pau,as,ac as the prediction on a target service
as for the active user au in the current context ac using
ratings from its k-nearest user neighbors. W is a
combined weighting from: (1) user similarity
weighting wsim(au,u) between the active user au and a
user u who is in the user neighborhood; (2) support
weighting wsup(u,as,c) of the rating on the target service
as for a user u in a context c, which is one of the m-
closest contexts; (3) context similarity weighting
wsim(ac,c) between the current context ac and the context
c; and (4) context significance weighting wsig(ac,c)
between the current context ac and the context c. This
method computes a prediction by performing a
weighted average from the user neighborhood.

3.3.2 Prediction based on Similar Services

Next, we show how context-based algorithms compute
predictions from k-closest service neighborhood. As
above, we use a reduced-size dataset of k-closest

service neighbors in m-closest contexts, and we must
consider the correlation between contexts. We start
with the original weighted sum formula of Equation (3)
and modify it with multiple contexts by incorporating
the support weighting on each rating, context similarity
weighting, and context significance weighting on each
m-closest context:

∑
∑

∈∈

∈∈

⋅
=

CcSs

CcSs
cs,au,

acasau W

WR
P

,

,
,,

 (8),

where
),(),(),,),(cacsigcacsimacssup(ausassim wwwwW ⋅⋅⋅=

Rau,as,ac is the rating of the active user au on the target
service as in the current context ac. W is a combined
weighting from confidence weighting, service
similarity weighting, context similarity weighting, and
context significance weighting.

3.4 Top-N Service Recommendation

Once the rating predictions are computed, the
recommender uses a combination of the calculated
prediction and the existing rating to derive a final
rating on the target service for the active user in the
current context. The reason is that if an existing rating
has a low support, we would like to use a support
weight adjusted rating for top-N service
recommendation. We use the following formula to
derive the final prediction:

RwPwP supsupfinal ⋅+⋅−=)1((9)

We denote Pfinal as the final prediction. wsup is the
support weight on the existing rating R (if rating is not
empty), and P is the prediction computed from Section
3.3. The recommender then returns top-N service
recommendation with the highest final predictions.

4 Related Work

Collaborative filtering recommender systems [2, 7, 11]
are widely accepted technique in electronic commerce,
but use little to no context information in generating
recommendations. Our use of context information in
the service recommender is the significant difference
from these existing systems.

 Page 10

DRAFT

Context -based infrastructure for smart environments
[3] describes a new abstraction that separates the
acquisition and interpretation of context data from the
application of context data by context -aware
applications. Since this architecture has been well
accepted in the research literature, we use it as the basis
for formulating our problem space. Our context server
in the smart environment shown in Figure 2,
corresponds to the aggregated modules of context
widgets, server, and interpreters in [3] . Our service
recommender is a context -aware application that
subscribes to the application-level context events from
the context server.

Interactive Workspaces [6] explores new possibilities
for people to work together in technology-rich spaces
with computing and interaction devices on many
different scales. The goal is to design a new
architecture that makes it easy to create and add new
display and input devices, to move work of all kinds
from one computing device to another, and to support
and facilitate group interactions. The system adopts an
infrastructure-centric approach to ubiquitous
computing. The philosophy of Interactive Workspaces
is similar to our context -aware service recommender in
that both systems incorporate existing services rather
than new services designed specifically for the smart
environment. However, our service recommender
differs in that it is concerned with pushing services to
users, rather than integrating disparate services with a
smart environment.

CoolTown [9] is a context -aware (location-aware)
ubiquitous system that offers a web model for
supporting nomadic users. Each physical entity in the
CoolTown system has a web resource that allows a
user to browse and interact. Users of CoolTown
system carry mobile devices, such as PDAs with
wireless Internet access. When a user approaches an
entity and points a mobile device at it, the URL of the
entity’s corresponding web resource is transferred to
her mobile device via IrDA or RF radio. The user’s
mobile device then fetches the web resource in a
browser. Like our context -aware recommender,
CoolTown provides web-based services to users in
smart environments. However, in CoolTown, physical
objects in the smart environment and web-based
services are tightly and statically coupled, meaning that
users do not get personalized services by interacting
with the entities; whereas in the context -aware service

recommender, the objects and services are decoupled
by the context events and recommendation process,
such that different users may get different service
recommendations when interacting with the same
object.

The GUIDE [3] is context -aware tourist guide system
that provides city visitors with relevant services to their
current contexts. The GUIDE allows visitors, using
handheld devices with wireless connection, to view
their location-based information and to create tailored
tours of the city attractions on browsers. Like our
context -aware service recommender, GUIDE system
provides web-based services to users in smart
environments. However, services need to be designed
and integrated specifically with the GUIDE system,
and choices of these services are limited. In contrast,
our context -aware service recommender does not limit
choices of web-based services that can be used in smart
environments.

5 Conclusion and Future Work

Recommending context -relevant services can help to
improve user experience in using services on mobile
devices in ubiquitous smart environments. It benefits
mobile users by pushing the relevant services to them
instead of requiring them to search and filter
information on mobile devices, where it is
inconvenient, slow, and costly. It is a step toward our
vision of seamless integration between web-based
services and smart environments, creating a seamless
user experience where using web-based services is
easy and effortless for users. In this paper, we have
described a context -aware service recommender system
that recommends relevant browser-based services to
mobile users in smart environments. We have
accomplished this by creating a new class of context -
based collaborative filtering algorithms that compute
predictions in an expanded <user, context, service>
matrix, by forming user or service neighborhoods
selected across multiple contexts.

An important factor in our context -aware recommender
is implicit feedbacks. We have shown that ratings can
be derived by observing which services are used or
ignored by users. Another important consideration is
data sparsity and the consequent cold-start problem.

 Page 11

DRAFT

We have shown that we can form better
recommendations than existing systems by taking
advantage of data from multiple contexts, and by
reducing data sparsity by aggregating users or services.
Finally, we have contributed a set of prediction
formulas that use additional weightings to describe
support for ratings derived through implicit feedback,
similarity between contexts, and confidence in context
similarities. We believe that these additional
weightings are generalizable to other prediction
schemes that use implicit feedback or multiple contexts.

We are in the process of implementing the system, and
plan to deploy it in our laboratory and in other
environments with interested third parties to obtain a
real-world dataset. This would allow us to evaluate the
different approaches in the design. We have described
that there are several experimentally determined
thresholds that affect the weightings in our algorithms;
the selection and tuning of these parameters determines
the quality of recommendations, and the computational
performance of the algorithms.

There are many future directions that we would like to
improve our system. Automated service composition,
such as SWORD [12], has been attracting growing
attention in the web and ubiquitous computing research
communities, and we would like to be able to integrate
this research with the service recommender. It is
possible that viable service compositions could be
personalized by using the same context -based
collaborative filtering techniques we introduce here.
These personalized, composed services would offer a
higher degree of serendipity to users: they may
discover new, relevant compositions of services that
they would not otherwise discover. We would like to
leverage the research results from existing service
composers to extend the capabilities and usefulness of
our system.

Another problem is the lack of automated service
invocation. That is our service recommender currently
requires users to manually supply context information,
although detected by the smart environments, as the
input parameters to browser-based services. We would
like to enhance our system such that it can
automatically extract context data and supply correct
input data to services for users, similar to XForm
approach by Barton ed al. [1]. This will provide
another level of seamless integration between web-

based services and smart environment with better
seamless user experience.

References

1. John Barton, Tim Kindberg, Hui Dai, Bodhi Priyantha,
and Fahs Al-bin-ali, “Sensor-enhanced Mobile Web
Clients: an Xforms Approach”, submitted to WWW 2003,
http://www.hpl.hp.com/personal/John_Barton/#WebBas
edUI.

2. John S. Breese, David Heckerman, and Carl Kadie,
“Empirical Analysis of Predictive Algorithms for
Collaborative Filtering”, In Proc. of the 14th Conference
on Uncertainty in Artificial Intelligence (UIA-98), pp
43-52, July, 1998

3. Keith Cheverst, Nigel Davies, Keith Mitchell, and
Adrian Friday, “Experiences of Developing and
Deploying a Context -Aware Tourist Guide, The GUIDE
Project”, In Proc. of MobiCom’00, Aug. 2000

4. Anind K. Dey, Gregory D. Abowd and Daniel Salber,
“A Context -Based Infrastructure for Smart
Environments”, In Proc. of the 1st International
Workshop on Managing Interactions in Smart
Environments (MANSE’99), Dec. 1999.

5. W. Keith Edwards, Mark W. Newman, Jana Swdivy,
Trevor Smith, and Shahram Izadi, “Challenge:
Recombinant Computing and the Speakeasy
Approach””, In Proc. of ACM MobiCom’02, Sept, 2002

6. Armando Fox, Brad Johanson, Pat Hanrahan, and Terry
Winograd, “Integrating Information Appliances into an
Interactive Workspace”, IEEE Computer Graphics and
Applications, 20:3 (May/June, 2000)

7. Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers,
and John Riedl, “An Algorithmic Framework for
Performing Collaborative Filtering”, In Proc. of the
1999 Conference on Research and development in
Information Retrieval, Aug. 1999.

8. Emre Kiciman, Laurence Melloul, Armando Fox,
“Position Summary: Towards Zero-Code Service
Composition”, In Proc. of Eighth Workshop on Hot
Topics in Operating Systems (HotOS), May, 2001

9. Tim Kindberg, John Barton, “A Web-Based Nomadic
Computing System”, Computer Networks, Vol. 35, No. 4,
pp 443-456, Mar. 2001

10. A.K. Jain, M.N. Murty, and P.J. Flynn, “Data
Clustering: A Review”, ACM Computing Surveys
(CSUR), Vol. 31, Issue 3, Sept. 1999

11. Badrul Sarwar, George Karypis, Joseph Knostan, and
John Riedl, “Item-based Collaborative Filtering
Recommendation Algorithms”, In Proc. of the 10th
International World Wide Web Conference (WWW10),
May, 2001.

 Page 12

DRAFT

12. R. Shankar, Armando Fox, “SWORD: A Developer
Toolkit for Web Service Composition”, In Proc. of 11th
World Wide Web conference (WWW’02), May, 2002.

